Abstract
Given a graph H, a graph G is called H-critical if G does not admit a homomorphism to H, but any proper subgraph of G does. Observe that \(K_{k-1}\)-critical graphs are the classic k-(colour)-critical graphs. This work is a first step towards extending questions of extremal nature from k-critical graphs to H-critical graphs. Besides complete graphs, the next classic case is odd cycles. Thus, given integers \(l\ge k\) we ask: what is the smallest order \(\eta (k,l)\) of a \(C_{2l+1}\)-critical graph of odd-girth at least \(2k+1\)? Denoting this value by \(\eta (k,l)\), we show that \(\eta (k,l)=4k\) for \(l\le k\le \frac{3l+i-3}{2}\) (\(2k=i\bmod 3\)) and that \(\eta (3,2)=15\). The latter is to say that a smallest graph of odd-girth 7 not admitting a homomorphism to the 5-cycle is of order 15 (there are at least 10 such graphs on 15 vertices).
This work is supported by the IFCAM project Applications of graph homomorphisms (MA/IFCAM/18/39) and by the ANR project HOSIGRA (ANR-17-CE40-0022).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beaudou, L., Foucaud, F., Naserasr, R.: Homomorphism bounds and edge-colourings of \(K_4\)-minor-free graphs. J. Comb. Theor. Ser. B 124, 128–164 (2017)
Catlin, P.A.: Graph homomorphisms into the five-cycle. J. Comb. Theor. Ser. B 45, 199–211 (1988)
Chvátal, V.: The minimality of the mycielski graph. In: Bari, R.A., Harary, F. (eds.) Graphs and Combinatorics. LNM, vol. 406, pp. 243–246. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0066446
Dirac, G.A.: A property of 4-chromatic graphs and remarks on critical graphs. J. London Math. Soc. 27, 85–92 (1952)
Erdős, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)
Exoo, G., Goedgebeur, J.: Bounds for the smallest \(k\)-chromatic graphs of given girth. Discrete Math. Theor. Comput. Sci. 21(3), 9 (2019)
Gallai, T.: Kritische Graphen I. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 165–192 (1963)
Gallai, T.: Kritische Graphen II. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 373–395 (1963)
Gerards, A.M.H.: Homomorphisms of graphs into odd cycles. J. Graph Theor. 12(1), 73–83 (1988)
Gyárfás, A., Jensen, T., Stiebitz, M.: On graphs with strongly independent colour classes. J. Graph Theor. 46(1), 1–14 (2004)
Harary, F.: Graph Theory, p. 149. Addison-Wesley, Reading (1969). Exercise 12.19
Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2004)
Jiang, T.: Small odd cycles in \(4\)-chromatic graphs. J. Graph Theor. 37(2), 115–117 (2001)
Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)
Năstase, E., Rödl, V., Siggers, M.: Note on robust critical graphs with large odd girth. Discrete Math. 310(3), 499–504 (2010)
Ngoc, N.V., Tuza, Z.: \(4\)-chromatic graphs with large odd girth. Discrete Math. 138(1–3), 387–392 (1995)
Nilli, A.: Short odd cycles in \(4\)-chromatic graphs. J. Graph Theor. 31(2), 145–147 (1999)
Payan, C.: On the chromatic number of cube-like graphs. Discrete Math. 103(3), 271–277 (1992)
Tardif, C.: The fractional chromatic numbers of cones over graphs. J. Graph Theor. 38(2), 87–94 (2001)
Youngs, D.A.: \(4\)-chromatic projective graphs. J. Graph Theor. 21(2), 219–227 (1996)
Zhu, X.: Circular chromatic number, a survey. Discrete Math. 229(1–3), 371–410 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Beaudou, L., Foucaud, F., Naserasr, R. (2020). Smallest \(C_{2l+1}\)-Critical Graphs of Odd-Girth \(2k+1\). In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-39219-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39218-5
Online ISBN: 978-3-030-39219-2
eBook Packages: Computer ScienceComputer Science (R0)