Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spinal Curve Guide Network (SCG-Net) for Accurate Automated Spinal Curvature Estimation

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2019)

Abstract

Cobb angle plays an important role in the diagnosis of scoliosis, which can effectively quantify the degree of scoliosis. Manual measurement of Cobb angles is time-consuming, and the results are also heavily affected by the expert’s choice. In this paper, we propose a spine curve guide framework to directly regress the cobb angle from single AP view X-rays images. We firstly design a segmentation network to accurately segment two spine boundary, and then aggregate the obtained boundary scoremap with the original spinal X-rays images to input another angle estimation network to make high-precision regression prediction for cobb angle. We evaluate our method in the AASCE19 challenge, and our result achieves 22.1775 SMAPE that shows strong competitiveness compared to other excellent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, B., Xu, Q., Wang, L., Leung, S., Chung, J., Li, S.: An automated and accurate spine curve analysis system. IEEE Access 7, 124596–124605 (2019)

    Article  Google Scholar 

  2. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  4. Vrtovec, T., Pernuš, F., Likar, B.: A review of methods for quantitative evaluation of spinal curvature. Eur. Spine J. 18(5), 593–607 (2009)

    Article  Google Scholar 

  5. Wang, L., Xu, Q., Leung, S., Chung, J., Chen, B., Li, S.: Accurate automated cobb angles estimation using multi-view extrapolation net. Med. Image Anal. 58, 101542 (2019)

    Article  Google Scholar 

  6. Wu, Hongbo, Bailey, Chris, Rasoulinejad, Parham, Li, Shuo: Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet. In: Descoteaux, Maxime, Maier-Hein, Lena, Franz, Alfred, Jannin, Pierre, Collins, D.Louis, Duchesne, Simon (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 127–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_15

    Chapter  Google Scholar 

  7. Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med. Image Anal. 48, 1–11 (2018)

    Article  Google Scholar 

  8. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 61671399) and by the Fundamental Research Funds for the Central Universities (Grant No. 20720190012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Huang, S., Wang, L. (2020). Spinal Curve Guide Network (SCG-Net) for Accurate Automated Spinal Curvature Estimation. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds) Computational Methods and Clinical Applications for Spine Imaging. CSI 2019. Lecture Notes in Computer Science(), vol 11963. Springer, Cham. https://doi.org/10.1007/978-3-030-39752-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39752-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39751-7

  • Online ISBN: 978-3-030-39752-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics