Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Service-Oriented Pervasive Platform Supporting Machine Learning Applications in Smart Buildings

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2019 Workshops (ICSOC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12019))

Included in the following conference series:

Abstract

Following the success of image recognition, machine learning approaches have recently been proposed to improve the efficiency for such systems as industry operation and maintenance, smart buildings, and smart homes. These applications are beginning to be deployed in pervasive environments. This poses greater stress in maintaining the quality of the applications. To date, there is no architecture and tools developed that can automatically support application quality maintenance. Even worse, there is no clear definition on the requirements. In this paper, we present initial experiments that we conducted with real use cases pertaining to Industry 4.0 and discuss a set of requirements that should be met by pervasive platforms to better support AI-based applications running in the edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weiser, M.: The computer for the 21st century. In: Human-Computer Interaction, pp. 933–940. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  2. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–7. ACM, New York (1996)

    Google Scholar 

  3. Acatech (ed.): Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group (2013)

    Google Scholar 

  4. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  5. Liu, Z., Tan, H., Luo, D., Yu, G., Li, J., Li, Z.: Optimal chiller sequencing control in an office building considering the variation of chiller maximum cooling capacity. Energy Build. 140, 430–442 (2017)

    Article  Google Scholar 

  6. Powell, K.M., Cole, W.J., et al.: Optimal chiller loading in a district cooling system with thermal energy storage. Energy 50, 445–453 (2013)

    Article  Google Scholar 

  7. Firdaus, N., et al.: Chiller: performance deterioration and maintenance. Energy Eng. 113(4), 55–80 (2016)

    Article  Google Scholar 

  8. Zheng, Z., et al.: Data driven chiller sequencing for reducing HVAC electricity consumption in commercial buildings. In: ACM e-Energy 2018, Karlsruhe, Germany, June 2018

    Google Scholar 

  9. Sun, Y., Wang, S., Xiao, F.: In situ performance comparison and evaluation of three chiller sequencing control strategies in a super high-rise building. Energy Build. 61, 333–343 (2013)

    Article  Google Scholar 

  10. Chen, Z., Liu, B.: Lifelong Machine Learning. Morgan & Claypool Publishers, San Rafael (2018)

    Google Scholar 

  11. Hu, C., Bao, W., Wang, D., Qian, Y., Zheng, M., Wang, S.: sTube+: an IoT communication sharing architecture for smart after-sales maintenance in buildings. In: Proceedings ACM Buildsys 2017, Delft, The Netherland, November 2017

    Google Scholar 

  12. Zhang, M.C.T.: Fogandiot: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)

    Article  Google Scholar 

  13. Becker, C., Julien, C., Lalanda, P., Zambonelli, F.: Pervasive computing middleware: current trends and emerging challenges. CCF Trans. Pervasive Comput. Interact., 1–14 (2019)

    Google Scholar 

  14. Gunalp, O., Escoffier, C., Lalanda, P.: Rondo: a tool suite for continuous deployment in dynamic environments. In: IEEE International Conference on Services Computing, pp. 720–727 (2015)

    Google Scholar 

  15. Zheng, A., Casari, A.: Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists. O’Reill, Sebastopoly (2018)

    Google Scholar 

  16. Lalanda, P., Gerber-Gaillard, E., Chollet, S.: Self-aware context in smart home pervasive platforms. In: IEEE ICAC 2016, Columbus (2017)

    Google Scholar 

  17. Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an extensible service oriented component framework. In: IEEE International Conference on Services Computing, SCC 2007, pp. 474–481. IEEE (2007)

    Google Scholar 

  18. Lalanda, P., McCann, J.A., Diaconescu, A.: Autonomic Computing - Principles. Design and Implementation. Undergraduate Topics in Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5007-7

    Book  Google Scholar 

  19. Tong, Y., et al.: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings ACM SIGKDD 2017, pp. 1653–1662 (2017)

    Google Scholar 

  20. Carbonell, J., Murugesan, K.: Self-paced multitask learning with shared knowledge. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 2522–2528 (2017)

    Google Scholar 

  21. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for internet of things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)

    Article  Google Scholar 

  22. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator Tech Smart House: a programmable pervasive space. Computer 38(3), 50–60 (2005)

    Article  Google Scholar 

  23. Gu, T., Pung, H.K., Zhang, D.Q.: Toward an OSGi-based infrastructure for context-aware applications. IEEE Pervasive Comput. 3(4), 66–74 (2004)

    Article  Google Scholar 

  24. Lupu, E., et al.: AMUSE: autonomic management of ubiquitous e-Health systems. Concurrency Comput. Pract. Experience 20(3), 277–295 (2008)

    Article  Google Scholar 

  25. Liu, H., Parashar, M., Hariri, S.: A component-based programming model for autonomic applications. In: Autonomic Computing (2004)

    Google Scholar 

  26. Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - a component system for pervasive computing. In: Proceedings International Conference on Pervasive Computing and Communications, pp. 67–76. IEEE (2004)

    Google Scholar 

  27. Lalanda, P., Mertz, J., Nunes, I.: Autonomic caching management in industrial smart gateways. In: IEEE Industrial Cyber-Physical Systems, pp. 26–31 (2018)

    Google Scholar 

  28. Jensen, S.K., Pedersen, T.B., Thomsen, C.: Time series management systems: a survey. IEEE Trans. Knowl. Data Eng. 29(11), 2581–2600 (2017)

    Article  Google Scholar 

  29. Williams, J.W., Aggour, K.S., Interrante, J., McHugh, J., Pool, E.: Bridging high velocity and high volume industrial big data through distributed in-memory storage & analytics. In: Proceedings International Conference Big Data, pp. 932–941 (2014)

    Google Scholar 

  30. Weigel, R.S., Lindholm, D.M., Wilson, A., Faden, J.: TSDS: high-performance merge subset and filter software for time series-like data. Earth Sci. Inform. 3(1/2), 29–40 (2010)

    Article  Google Scholar 

  31. Pelkonen, T., et al.: Gorilla: a fast scalable in-memory time series database. VLDB Endowment 8(12), 1816–1827 (2015)

    Article  Google Scholar 

  32. Konečný, J., Brendan McMahan, H., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv:1610.05492 (2017)

  33. Chollet, S., Lalanda, P.: Security at the process level. In: International Conference on Service-Oriented Computing (SCC), pp. 165–172 (2008)

    Google Scholar 

  34. Chollet, S., Lalanda, P.: An extensible abstract service orchestration framework. In: International Conference on Web Services (ICWS), pp. 831–838 (2009)

    Google Scholar 

  35. Morand, D., Garcia, I., Lalanda, P.: Autonomic enterprise service bus. In: IEEE 16th Conference on Emerging Technologies & Factory Automation (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lalanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lalanda, P., Wang, D., Vega, G., Cervantes, H., Khalid, M.A. (2020). Service-Oriented Pervasive Platform Supporting Machine Learning Applications in Smart Buildings. In: Yangui, S., et al. Service-Oriented Computing – ICSOC 2019 Workshops. ICSOC 2019. Lecture Notes in Computer Science(), vol 12019. Springer, Cham. https://doi.org/10.1007/978-3-030-45989-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45989-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45988-8

  • Online ISBN: 978-3-030-45989-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics