Abstract
As one of the most important enabling technologies to realize the next generation intelligent transportation system (ITS), vehicular networks are considered as a set of vehicles embedded with on-board units (OBUs) and road infrastructures (i.e., roadside units (RSUs) and base stations (BSs)). With a radio interface, each OBU can make the connection with other OBUs, RSUs, BSs and other smart devices, by which they can communicate with each other to share useful information with the goal of facilitating the driving and transportation system. Generally, as the typical scenario which is shown in Fig. 1.1, vehicular networks mainly consist of two types: (1) vehicle to vehicle communications, i.e., V2V, and (2) vehicle to roadside infrastructure communications, i.e., V2I.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Z. Xiao, X. Shen, F. Zeng, V. Havyarimana, D. Wang, W. Chen, K. Li, Spectrum resource sharing in heterogeneous vehicular networks: a noncooperative game-theoretic approach with correlated equilibrium. IEEE Trans. Veh. Technol. 67(10), 9449–9458 (2018)
T. Wang, X. Cao, S. Wang, Self-adaptive clustering and load-bandwidth management for uplink enhancement in heterogeneous vehicular networks. IEEE Internet Things J. 6(3), 5607–5617 (2019)
Y. Hui, Z. Su, T.H. Luan, J. Cai, A game theoretic scheme for optimal access control in heterogeneous vehicular networks. IEEE Trans. Intell. Transp. Syst. 20(12), 4590–4603 (2019)
P. Dai, K. Liu, X. Wu, Y. Liao, V.C.S. Lee, S.H. Son, Bandwidth efficiency and service adaptiveness oriented data dissemination in heterogeneous vehicular networks. IEEE Trans. Veh. Technol. 67(7), 6585–6598 (2018)
X. Zhao, X. Li, Z. Xu, T. Chen, An optimal game approach for heterogeneous vehicular network selection with varying network performance. IEEE Intell. Transp. Syst. Mag. 11(3), 80–92 (2019)
W. Xu, W. Shi, F. Lyu, H. Zhou, N. Cheng, X. Shen, Throughput analysis of vehicular internet access via roadside wifi hotspot. IEEE Trans. Veh. Technol. 68(4), 3980–3991 (2019)
L. Liang, H. Ye, G.Y. Li, Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J. 6(1), 124–135 (2019)
Y. Hui, Z. Su, S. Guo, Utility based data computing scheme to provide sensing service in internet of things. IEEE Trans. Emerg. Top. Comput. 7(2), 337–348 (2019)
Z. Zhou, J. Feng, Z. Chang, X. Shen, Energy-efficient edge computing service provisioning for vehicular networks: a consensus admm approach. IEEE Trans. Veh. Technol. 68(5), 5087–5099 (2019)
H. Peng, L. Liang, X. Shen, G.Y. Li, Vehicular communications: a network layer perspective. IEEE Trans. Veh. Technol. 68(2), 1064–1078 (2019)
M.A. Togou, L. Khoukhi, A. Hafid, Performance analysis and enhancement of wave for v2v non-safety applications. IEEE Trans. Intell. Transp. Syst. 19(8), 2603–2614 (2018)
S. Darbha, S. Konduri, P.R. Pagilla, Benefits of v2v communication for autonomous and connected vehicles. IEEE Trans. Intell. Transp. Syst. 20(5), 1954–1963 (2019)
J. Mei, K. Zheng, L. Zhao, Y. Teng, X. Wang, A latency and reliability guaranteed resource allocation scheme for lte v2v communication systems. IEEE Trans. Wireless Commun. 17(6), 3850–3860 (2018)
F. Abbas, P. Fan, Z. Khan, A novel low-latency v2v resource allocation scheme based on cellular v2x communications. IEEE Trans. Intell. Transp. Syst. 20(6), 2185–2197 (2019)
P.S. Bithas, A.G. Kanatas, D.B. da Costa, P.K. Upadhyay, U.S. Dias, On the double-generalized gamma statistics and their application to the performance analysis of v2v communications. IEEE Trans. Commun. 66(1), 448–460 (2018)
R. Atallah, M. Khabbaz, C. Assi, Multihop v2i communications: a feasibility study, modeling, and performance analysis. IEEE Trans. Veh. Technol. 66(3), 2801–2810 (2017)
O. Popescu, S. Sha-Mohammad, H. Abdel-Wahab, D.C. Popescu, S. El-Tawab, Automatic incident detection in intelligent transportation systems using aggregation of traffic parameters collected through v2i communications. IEEE Intell. Transp. Syst. Mag. 9(2), 64–75 (2017)
Z. Su, Y. Hui, T.H. Luan, S. Guo, Engineering a game theoretic access for urban vehicular networks. IEEE Trans. Veh. Technol. 66(6), 4602–4615 (2017)
J. Shi, Z. Yang, H. Xu, M. Chen, B. Champagne, Dynamic resource allocation for lte-based vehicle-to-infrastructure networks. IEEE Trans. Veh. Technol. 68(5), 5017–5030 (2019)
F. Jiang, C. Li, Z. Gong, Low complexity and fast processing algorithms for v2i massive mimo uplink detection. IEEE Trans. Veh. Technol. 67(6), 5054–5068 (2018)
A. Boualouache, S. Senouci, S. Moussaoui, A survey on pseudonym changing strategies for vehicular ad-hoc networks. IEEE Commun. Surv. Tutorials 20(1), 770–790 (2018)
P.S. Bithas, G.P. Efthymoglou, A.G. Kanatas, V2V cooperative relaying communications under interference and outdated CSI. IEEE Trans. Veh. Technol. 67(4), 3466–3480 (2018)
Z. Su, Y. Hui, S. Guo, D2d-based content delivery with parked vehicles in vehicular social networks. IEEE Wirel. Commun. 23(4), 90–95 (2016)
D.M. Mughal, J.S. Kim, H. Lee, M.Y. Chung, Performance analysis of v2v communications: a novel scheduling assignment and data transmission scheme. IEEE Trans. Veh. Technol. 68(7), 7045–7056 (2019)
J. Gao, M. Li, L. Zhao, X. Shen, Contention intensity based distributed coordination for v2v safety message broadcast. IEEE Trans. Veh. Technol. 67(12), 12288–12301 (2018)
H. Yao, D. Zeng, H. Huang, S. Guo, A. Barnawi, I. Stojmenovic, Opportunistic offloading of deadline-constrained bulk cellular traffic in vehicular DTNs. IEEE Trans. Comput. 64(12), 3515–3527 (2015)
P. Kolios, V. Friderikos, K. Papadaki, Energy-efficient relaying via store-carry and forward within the cell. IEEE Trans. Mobile Comput. 13(1), 202–215 (2014)
J. He, L. Cai, J. Pan, P. Cheng, Delay analysis and routing for two-dimensional vanets using carry-and-forward mechanism. IEEE Trans. Mobile Comput. 16(7), 1830–1841 (2017)
Q. Xu, Z. Su, K. Zhang, P. Ren, X. Shen, Epidemic information dissemination in mobile social networks with opportunistic links. IEEE Trans. Emerg. Top. Comput. 3(3), 399–409 (2015)
K. Zheng, L. Hou, H. Meng, Q. Zheng, N. Lu, L. Lei, Soft-defined heterogeneous vehicular network: architecture and challenges. IEEE Netw. 30(4), 72–80 (2016)
Z. He, J. Cao, X. Liu, SDVN: enabling rapid network innovation for heterogeneous vehicular communication. IEEE Netw. 30(4), 10–15 (2016)
Y. Hui, Z. Su, T.H. Luan, Collaborative content delivery in software-defined heterogeneous vehicular networks. IEEE/ACM Trans. Netw. 28(2), 575–587 (2020)
K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, Y. Zhou, Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions. IEEE Commun. Surv. Tutorials 17(4), 2377–2396 (2015)
M. Xing, J. He, L. Cai, Utility maximization for multimedia data dissemination in large-scale vanets. IEEE Trans. Mobile Comput. 16(4), 1188–1198 (2017)
J. Qiao, Y. He, X.S. Shen, Improving video streaming quality in 5g enabled vehicular networks. IEEE Wirel. Commun. 25(2), 133–139 (2018)
J. Guo, B. Song, Y. He, F.R. Yu, M. Sookhak, A survey on compressed sensing in vehicular infotainment systems. IEEE Commun. Surv. Tutorials 19(4), 2662–2680 (2017)
L. Sarakis, T. Orphanoudakis, H.C. Leligou, S. Voliotis, A. Voulkidis, Providing entertainment applications in vanet environments. IEEE Wirel. Commun. 23(1), 30–37 (2016)
E. Costa-Montenegro, F. Quinoy-Garcia, F.J. Gonzalez-castano, F. Gil-Castineira, Vehicular entertainment systems: mobile application enhancement in networked infrastructures. IEEE Veh. Technol. Mag. 7(3), 73–79 (2012)
C. Wang, Y. Li, D. Jin, S. Chen, On the serviceability of mobile vehicular cloudlets in a large-scale urban environment. IEEE Trans. Intell. Transp. Syst. 17(10), 2960–2970 (2016)
T. ETSI, Intelligent transport systems (its); vehicular communications; basic set of applications; definitions, Tech. Rep. ETSI TR 102 638, Tech. Rep., 2009
E. Smith, Statistics on intersection accidents, https://www.autoaccident.com/statistics-on-intersection-accidents.html
F.J. Martinez, C.K. Toh, J.C. Cano, C.T. Calafate, P. Manzoni, Emergency services in future intelligent transportation systems based on vehicular communication networks. IEEE Intell. Transp. Syst. Mag. 2(2), 6–20 (2010)
L. Wang, T. Han, Q. Li, J. Yan, X. Liu, D. Deng, Cell-less communications in 5g vehicular networks based on vehicle-installed access points. IEEE Wirel. Commun. 24(6), 64–71 (2017)
J. Nightingale, P. Salva-Garcia, J.M.A. Calero, Q. Wang, 5g-QoE: QoE modelling for ultra-hd video streaming in 5g networks. IEEE Trans. Broadcast. 64(2), 621–634 (2018)
C. Mao, M. Khalily, P. Xiao, T.W.C. Brown, S. Gao, Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5g broadcast applications. IEEE Trans. Antennas Propag. 67(1), 160–168 (2019)
V. Petrov, M.A. Lema, M. Gapeyenko, K. Antonakoglou, D. Moltchanov, F. Sardis, A. Samuylov, S. Andreev, Y. Koucheryavy, M. Dohler, Achieving end-to-end reliability of mission-critical traffic in softwarized 5g networks. IEEE J. Sel. Areas Commun. 36(3), 485–501 (2018)
T.K. Vu, M. Bennis, M. Debbah, M. Latva-Aho, Joint path selection and rate allocation framework for 5g self-backhauled mm-wave networks. IEEE Trans. Wireless Commun. 18(4), 2431–2445 (2019)
W. Lu, X. Meng, G. Guo, Fast service migration method based on virtual machine technology for MEC. IEEE Internet Things J. 6(3), 4344–4354 (2019)
X. He, R. Jin, H. Dai, Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT. IEEE Internet Things J. 6(3), 4547–4555 (2019)
Z. Ding, P. Fan, H.V. Poor, Impact of non-orthogonal multiple access on the offloading of mobile edge computing. IEEE Trans. Commun. 67(1), 375–390 (2019)
Z. Ning, P. Dong, X. Kong, F. Xia, A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things. IEEE Internet Things J. 6(3), 4804–4814 (2019)
J. Zhang, X. Hu, Z. Ning, E.C. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu, V.C.M. Leung, Joint resource allocation for latency-sensitive services over mobile edge computing networks with caching. IEEE Internet Things J. 6(3), 4283–4294 (2019)
T.Q. Dinh, Q.D. La, T.Q.S. Quek, H. Shin, Learning for computation offloading in mobile edge computing. IEEE Trans. Commun. 66(12), 6353–6367 (2018)
X. Lyu, W. Ni, H. Tian, R.P. Liu, X. Wang, G.B. Giannakis, A. Paulraj, Optimal schedule of mobile edge computing for internet of things using partial information. IEEE J. Sel. Areas Commun. 35(11), pp. 2606–2615 (2017)
S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans. Signal Inf. Process. Netw. 1(2), 89–103 (2015)
X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016)
A. Fischer, J.F. Botero, M.T. Beck, H. de Meer, X. Hesselbach, Virtual network embedding: a survey. IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013)
V.G. Nguyen, A. Brunstrom, K.J. Grinnemo, J. Taheri, SDN/NFV-based mobile packet core network architectures: a survey. IEEE Commun. Surv. Tutorials 19(3), 1567–1602 (2017)
X. Cheng, Y. Wu, G. Min, A.Y. Zomaya, Network function virtualization in dynamic networks: a stochastic perspective. IEEE J. Sel. Areas Commun. 36(10), 2218–2232 (2018)
R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 18(1), 236–262 (2016)
D. Cotroneo, R. Natella, S. Rosiello, NFV-throttle: an overload control framework for network function virtualization. IEEE Trans. Netw. Serv. Manag. 14(4), 949–963 (2017).
R. Mijumbi, J. Serrat, J.L. Gorricho, N. Bouten, F.D. Turck, R. Boutaba, Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 18(1), 236–262 (2015)
B. Han, V. Gopalakrishnan, L. Ji, S. Lee, Network function virtualization: Challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On multi-access edge computing: a survey of the emerging 5g network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutorials 19(3), 1657–1681 (2017)
R. Riggio, A. Bradai, D. Harutyunyan, T. Rasheed, T. Ahmed, Scheduling wireless virtual networks functions. IEEE Trans. Netw. Serv. Manage. 13(2), 240–252 (2016)
M. Zhu, J. Cao, Z. Cai, Z. He, M. Xu, Providing flexible services for heterogeneous vehicles: an NFV-based approach. IEEE Netw. 30(3), 64–71 (2016)
S. Khan, A. Gani, A.W.A. Wahab, M. Guizani, M.K. Khan, Topology discovery in software defined networks: threats, taxonomy, and state-of-the-art. IEEE Commun. Surv. Tutorials 19(1), 303–324 (2016)
S. Khan, A. Gani, A.W.A. Wahab, A. Abdelaziz, K. Ko, M.K. Khan, M. Guizani, Software-defined network forensics: motivation, potential locations, requirements, and challenges. IEEE Netw. 30(6), 6–13 (2016)
M.A. Salahuddin, A. Al-Fuqaha, M. Guizani, Software-defined networking for rsu clouds in support of the internet of vehicles. IEEE Internet Things J. 2(2), 133–144 (2015)
R. Jain, S. Paul, Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun. Mag. 51(11), 24–31 (2013)
D. Kreutz, F.M.V. Ramos, P.E. Verłssimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)
S. Garg, K. Kaur, S.H. Ahmed, A. Bradai, G. Kaddoum, M. Atiquzzaman, MobQoS: Mobility-aware and QoS-driven SDN framework for autonomous vehicles. IEEE Wirel. Commun. 26(4), 12–20 (2019)
R. Amin, M. Reisslein, N. Shah, Hybrid SDN networks: a survey of existing approaches. IEEE Commun. Surv. Tutorials 20(4), 3259–3306 (2018)
G. Yu, R. Liu, Q. Chen, Z. Tang, A hierarchical sdn architecture for ultra-dense millimeter-wave cellular networks. IEEE Commun. Mag. 56(6), 79–85 (2018)
Z. Su, Q. Xu, H. Zhu, Y. Wang, A novel design for content delivery over software defined mobile social networks. IEEE Netw. 29(4), 62–67 (2015)
K. Wang, Y. Wang, D. Zeng, S. Guo, An SDN-based architecture for next-generation wireless networks. IEEE Wirel. Commun. 24(1), 25–31 (2017)
H. Li, M. Dong, K. Ota, Control plane optimization in software-defined vehicular ad hoc networks. IEEE Trans. Veh. Technol. 65(10), 7895–7904 (2016)
J. Weng, J. Weng, Y. Zhang, W. Luo, W. Lan, BENBI: scalable and dynamic access control on the northbound interface of SDN-based vanet. IEEE Trans. Veh. Technol. 68(1), 822–831 (2019)
K. Liu, L. Feng, P. Dai, V.C.S. Lee, S.H. Son, J. Cao, Coding-assisted broadcast scheduling via memetic computing in SDN-based vehicular networks. IEEE Trans. Intell. Transp. Syst. 19(8), 2420–2431 (2018)
J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, M. Qiu, A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Commun. Mag. 55(7), 94–100 (2017)
X. Huang, R. Yu, J. Kang, Z. Xia, Y. Zhang, Software defined networking for energy harvesting internet of things. IEEE Internet Things J. 5(3), 1389–1399 (2018)
A. Lara, A. Kolasani, B. Ramamurthy, Network innovation using openflow: a survey. IEEE Commun. Surv. Tutorials 16(1), 493–512 (2013)
C.J. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L.M. Contreras, H. Jin, J.C. Zuniga, An architecture for software defined wireless networking. IEEE Wirel. Commun. 21(3), 52–61 (2014)
F. Hu, Q. Hao, K. Bao, A survey on software-defined network and openflow: From concept to implementation. IEEE Commun. Surv. Tutorials 16(4), 2181–2206 (2014)
J. Chen, H. Zhou, N. Zhang, W. Xu, Q. Yu, L. Gui, X. Shen, Service-oriented dynamic connection management for software-defined internet of vehicles. IEEE Trans. Intell. Transp. Syst. 18(10), 2826–2837 (2017)
C. Wang, C. Liang, F.R. Yu, Q. Chen, L. Tang, Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wireless Commun. 16(8), 4924–4938 (2017)
J. Zhao, Q. Li, Y. Gong, K. Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Trans. Veh. Technol. 68(8), 7944–7956 (2019)
J. Du, F.R. Yu, X. Chu, J. Feng, G. Lu, Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization. IEEE Trans. Veh. Technol. 68(2), 1079–1092 (2019)
Y. Wu, L.P. Qian, H. Mao, X. Yang, H. Zhou, X. Tan, D.H.K. Tsang, Secrecy-driven resource management for vehicular computation offloading networks. IEEE Netw. 32(3), 84–91 (2018)
Z. Su, Y. Hui, T.H. Luan, Distributed task allocation to enable collaborative autonomous driving with network softwarization. IEEE J. Sel. Areas Commun. 36(10), 2175–2189 (2018)
X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, S. Chen, Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6), 3860–3873 (2016)
B. Brik, N. Lagraa, N. Tamani, A. Lakas, Y. Ghamri-Doudane, Renting out cloud services in mobile vehicular cloud. IEEE Trans. Veh. Technol. 67(10), 9882–9895 (2018)
E. Lee, E. Lee, M. Gerla, S.Y. Oh, Vehicular cloud networking: architecture and design principles. IEEE Commun. Mag. 52(2), 148–155 (2014)
S. Wang, J. Wang, X. Wang, T. Qiu, Y. Yuan, L. Ouyang, Y. Guo, F. Wang, Blockchain-powered parallel healthcare systems based on the acp approach. IEEE Trans. Comput. Soc. Syst. 5(4), 942–950 (2018)
D. Liu, A. Alahmadi, J. Ni, X. Lin, X. Shen, Anonymous reputation system for IIoT-enabled retail marketing atop PoS blockchain. IEEE Trans. Ind. Inf. 15(6), 3527–3537 (2019)
P. Danzi, A.E. Kalør, Č. Stefanović, P. Popovski, Delay and communication tradeoffs for blockchain systems with lightweight IoT clients. IEEE Internet Things J. 6(2), 2354–2365 (2019)
M. Liu, F.R. Yu, Y. Teng, V.C.M. Leung, M. Song, Performance optimization for blockchain-enabled industrial internet of things (IIoT) systems: a deep reinforcement learning approach. IEEE Trans. Ind. Inf. 15(6), 3559–3570 (2019)
Y. Sun, L. Zhang, G. Feng, B. Yang, B. Cao, M.A. Imran, Blockchain-enabled wireless internet of things: performance analysis and optimal communication node deployment. IEEE Internet Things J. 6(3), 5791–5802 (2019)
H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, Y. Qian, Resource trading in blockchain-based industrial internet of things. IEEE Trans. Ind. Inf. 15(6), 3602–3609 (2019)
J. Wan, J. Li, M. Imran, D. Li, A blockchain-based solution for enhancing security and privacy in smart factory. IEEE Trans. Ind. Inf. 15(6), 3652–3660 (2019)
J. Huang, L. Kong, G. Chen, M. Wu, X. Liu, P. Zeng, Towards secure industrial IoT: Blockchain system with credit-based consensus mechanism. IEEE Trans. Ind. Inf. 15(6), 3680–3689 (2019)
Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, J. Wan, Smart contract-based access control for the internet of things. IEEE Internet Things J. 6(2), 1594–1605 (2019)
Z. Su, Y. Wang, Q. Xu, M. Fei, Y. Tian, N. Zhang, A secure charging scheme for electric vehicles with smart communities in energy blockchain. IEEE Internet Things J. 6(3), 4601–4613 (2019)
J. Pan, J. Wang, A. Hester, I. Alqerm, Y. Liu, Y. Zhao, Edgechain: an edge-IoT framework and prototype based on blockchain and smart contracts. IEEE Internet Things J. 6(3), 4719–4732 (2019)
Z. Yang, K. Yang, L. Lei, K. Zheng, V.C.M. Leung, Blockchain-based decentralized trust management in vehicular networks. IEEE Internet Things J. 6(2), 1495–1505 (2019)
M. Li, L. Zhu, X. Lin, Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing. IEEE Internet Things J. 6(3), 4573–4584 (2019)
T. Jiang, H. Fang, H. Wang, Blockchain-based internet of vehicles: distributed network architecture and performance analysis. IEEE Internet Things J. 6(3), 4640–4649 (2019)
Y. Wang, Z. Su, N. Zhang, BSIS: blockchain-based secure incentive scheme for energy delivery in vehicular energy network. IEEE Trans. Ind. Inf. 15(6), 3620–3631 (2019)
J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, Y. Zhang, Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J. 6(3), 4660–4670 (2019)
V. Ortega, F. Bouchmal, J.F. Monserrat, Trusted 5g vehicular networks: blockchains and content-centric networking. IEEE Veh. Technol. Mag. 13(2), 121–127 (2018)
C. Xu, M. Wang, X. Chen, L. Zhong, L.A. Grieco, Optimal information centric caching in 5g device-to-device communications. IEEE Trans. Mobile Comput. 17(9), 2114–2126 (2018)
Y. Zhou, F.R. Yu, J. Chen, Y. Kuo, Resource allocation for information-centric virtualized heterogeneous networks with in-network caching and mobile edge computing. IEEE Trans. Veh. Technol. 66(12), 11339–11351 (2017)
K. Xu, Y. Wan, G. Xue, Powering smart homes with information-centric networking. IEEE Commun. Mag. 57(6), 40–46 (2019)
H. Yao, M. Li, J. Du, P. Zhang, C. Jiang, Z. Han, Artificial intelligence for information-centric networks. IEEE Commun. Mag. 57(6), 47–53 (2019)
C. Liang, F.R. Yu, H. Yao, Z. Han, Virtual resource allocation in information-centric wireless networks with virtualization. IEEE Trans. Veh. Technol. 65(12), 9902–9914 (2016)
G. Xylomenos, C.N. Ververidis, V.A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K.V. Katsaros, G.C. Polyzos, A survey of information-centric networking research. IEEE Commun. Surv. Tutorials 16(2), 1024–1049 (2014)
R. Wang, X. Peng, J. Zhang, K.B. Letaief, Mobility-aware caching for content-centric wireless networks: modeling and methodology. IEEE Commun. Mag. 54(8), 77–83 (2016)
H. Asaeda, K. Matsuzono, T. Turletti, Contrace: a tool for measuring and tracing content-centric networks. IEEE Commun. Mag. 53(3), 182–188 (2015)
Z. Su, Q. Xu, Content distribution over content centric mobile social networks in 5g. IEEE Commun. Mag. 53(6), 66–72 (2015)
Q. Wu, Z. Li, G. Tyson, S. Uhlig, M.A. Kaafar, G. Xie, Privacy-aware multipath video caching for content-centric networks. IEEE J. Sel. Areas Commun. 34(8), 2219–2230 (2016)
T. Semertzidis, P. Daras, P. Moore, L. Makris, M.G. Strintzis, Automatic creation of 3d environments from a single sketch using content-centric networks. IEEE Commun. Mag. 49(3), 152–157 (2011)
Z. Su, Y. Hui, Q. Yang, The next generation vehicular networks: a content-centric framework. IEEE Wirel. Commun. 24(1), 60–66 (2017)
A. Mahmood, C.E. Casetti, C.F. Chiasserini, P. Giaccone, J. Harri, The rich prefetching in edge caches for in-order delivery to connected cars. IEEE Trans. Veh. Technol. 68(1), 4–18 (2019)
Z. Su, Y. Hui, Q. Xu, T. Yang, J. Liu, Y. Jia, An edge caching scheme to distribute content in vehicular networks. IEEE Trans. Veh. Technol. 67(6), 5346–5356 (2018)
L.T. Tan, R.Q. Hu, L. Hanzo, Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks. IEEE Trans. Veh. Technol. 68(4), 3086–3099 (2019)
Y. Hui, Z. Su, T.H. Luan, J. Cai, Content in motion: an edge computing based relay scheme for content dissemination in urban vehicular networks. IEEE Trans. Intell. Transp. Syst. 20(8), 3115–3128 (2019)
K. Zhang, S. Leng, Y. He, S. Maharjan, Y. Zhang, Cooperative content caching in 5g networks with mobile edge computing. IEEE Wirel. Commun. 25(3), 80–87 (2018)
Q. Xu, Z. Su, Q. Zheng, M. Luo, B. Dong, Secure content delivery with edge nodes to save caching resources for mobile users in green cities. IEEE Trans. Ind. Inf. 14(6), 2550–2559 (2018)
E. Bastug, M. Bennis, M. Debbah, Living on the edge: the role of proactive caching in 5g wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)
N. Li, D.W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, A.R. Girard, Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems. IEEE Trans. Control Syst. Technol. 26(5), 1782–1797 (2018)
J. Petit, S.E. Shladover, Potential cyberattacks on automated vehicles. IEEE Trans. Intell. Transp. Syst. 16(2), 546–556 (2015)
Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8),1738–1762 (2019)
L. Li, N. Zheng, F. Wang, On the crossroad of artificial intelligence: a revisit to alan turing and norbert wiener. IEEE Trans. Cybern. 49(10), 3618–3626 (2019)
G. Acampora, D.J. Cook, P. Rashidi, A.V. Vasilakos, A survey on ambient intelligence in healthcare. Proc. IEEE 101(12), 2470–2494 (2013)
S. Hussein, P. Kandel, C.W. Bolan, M.B. Wallace, U. Bagci, Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans. Med. Imaging 38(8), 1777–1787 (2019)
L. Shao, D. Wu, X. Li, Learning deep and wide: a spectral method for learning deep networks. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2303–2308 (2014)
M. Mahmud, M.S. Kaiser, A. Hussain, S. Vassanelli, Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)
Z. Chen, L. Duan, S. Wang, Y. Lou, T. Huang, D.O. Wu, W. Gao, Toward knowledge as a service over networks: a deep learning model communication paradigm. IEEE J. Sel. Areas Commun. 37(6), 1349–1363 (2019)
Z.M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani, State-of-the-art deep learning: evolving machine intelligence toward tomorrows intelligent network traffic control systems. IEEE Commun. Surv. Tutorials 19(4), 2432–2455 (2017)
Q. Wang, J. Wan, X. Li, Robust hierarchical deep learning for vehicular management. IEEE Trans. Veh. Technol. 68(5), 4148–4156 (2019)
Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, J. Liao, Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 68(5), 4192–4203 (2019)
R.F. Atallah, C.M. Assi, M.J. Khabbaz, Scheduling the operation of a connected vehicular network using deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 20(5), 1669–1682 (2019)
X. Liang, X. Du, G. Wang, Z. Han, A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)
Y. He, N. Zhao, H. Yin, Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2018)
Y. Wang, M. Liu, J. Yang, G. Gui, Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Trans. Veh. Technol. 68(4), 4074–4077 (2019)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Su, Z., Hui, Y., Luan, T.H., Liu, Q., Xing, R. (2021). Introduction. In: The Next Generation Vehicular Networks, Modeling, Algorithm and Applications. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-56827-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-56827-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-56826-9
Online ISBN: 978-3-030-56827-6
eBook Packages: Computer ScienceComputer Science (R0)