Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Labelling of Genre-Specific Collections for Word Sense Disambiguation in Russian

  • Conference paper
  • First Online:
Artificial Intelligence (RCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12412))

Included in the following conference series:

  • 1002 Accesses

Abstract

Supervised word sense disambiguation (WSD) models suffer from the knowledge acquisition bottleneck: the semantic annotation of large text collections is very time-consuming and requires much effort from experts. In this article we address the issue of the lack of sense-annotated data for the WSD task in Russian. We present an approach that is able to automatically generate text collections and annotate them with word senses. This method is based on the substitution and exploits monosemous relatives (related unambiguous entries) that can be located at relatively long distances from a target ambiguous word. Moreover, we present a similarity-based ranking procedure that enables to sort and filter monosemous relatives. Our experiments with WSD models, that rely on contextualized embeddings ELMo and BERT, have proven that our method can boost the overall performance. The proposed approach is knowledge-based and relies on the Russian thesaurus RuWordNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code of our algorithm and experiments is publicly available at: https://github.com/loenmac/russian_wsd_data.

References

  1. Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In: Proceedings of the workshop on Human Language Technology, pp. 303–308. Association for Computational Linguistics (1993)

    Google Scholar 

  2. Taghipour, K., Ng, H.T.: One million sense-tagged instances for word sense disambiguation and induction. In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pp. 338–344 (2015)

    Google Scholar 

  3. Martinez, D., Agirre, E., Wang, X.: Word relatives in context for word sense disambiguation. In: Proceedings of the Australasian Language Technology Workshop 2006, pp. 42–50 (2006)

    Google Scholar 

  4. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2227–2237 (2018)

    Google Scholar 

  5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)

    Google Scholar 

  6. Leacock, C., Miller, G.A., Chodorow, M.: Using corpus statistics and WordNet relations for sense identification. Comput. Linguist. 24(1), 147–165 (1998)

    Google Scholar 

  7. Miller, G.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  8. Przybyła, P.: How big is big enough? Unsupervised word sense disambiguation using a very large corpus. arXiv preprint arXiv:1710.07960 (2017)

  9. Mihalcea, R., Moldovan, D.I.: An iterative approach to word sense disambiguation. In: FLAIRS Conference, pp. 219–223 (2000)

    Google Scholar 

  10. Seo, H.C., Chung, H., Rim, H.C., Myaeng, S.H., Kim, S.H.: Unsupervised word sense disambiguation using WordNet relatives. Comput. Speech Lang. 18(3), 253–273 (2004)

    Article  Google Scholar 

  11. Yuret, D.: KU: word sense disambiguation by substitution. In: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 207–213. Association for Computational Linguistics (2007)

    Google Scholar 

  12. Mihalcea, R.: Bootstrapping large sense tagged corpora. In: Proceedings of the Third International Conference on Language Resources and Evaluation (LREC-2002), Las Palmas, Canary Islands, Spain, vol. 1999 (2002)

    Google Scholar 

  13. Loukachevitch, N., Chetviorkin, I.: Determining the most frequent senses using Russian linguistic ontology RuThes. In: Proceedings of the Workshop on Semantic Resources and Semantic Annotation for Natural Language Processing and the Digital Humanities at NODALIDA 2015, pp. 21–27 (2015)

    Google Scholar 

  14. Henrich, V., Hinrichs, E., Vodolazova, T.: WebCAGe: a web-harvested corpus annotated with GermaNet senses. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 387–396. Association for Computational Linguistics (2012)

    Google Scholar 

  15. Agirre, E., De Lacalle, O.L.: Publicly available topic signatures for all WordNet nominal senses. In: LREC (2004)

    Google Scholar 

  16. Pasini, T., Navigli, R.: Train-O-Matic: large-scale supervised word sense disambiguation in multiple languages without manual training data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 78–88 (2017)

    Google Scholar 

  17. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41(2), 10 (2009)

    Article  Google Scholar 

  18. Wiedemann, G., Remus, S., Chawla, A., Biemann, C.: Does BERT make any sense? Interpretable word sense disambiguation with contextualized embeddings. arXiv preprint arXiv:1909.10430 (2019)

  19. Kutuzov, A., Kuzmenko, E.: To lemmatize or not to lemmatize: how word normalisation affects ELMo performance in word sense disambiguation. In: Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing, pp. 22–28 (2019)

    Google Scholar 

  20. Loukachevitch, N.V., Lashevich, G., Gerasimova, A.A., Ivanov, V.V., Dobrov, B.V.: Creating Russian WordNet by conversion. In: Proceedings of Conference on Computational linguistics and Intellectual technologies Dialog-2016, pp. 405–415 (2016)

    Google Scholar 

  21. Shavrina, T., Shapovalova, O.: To the methodology of corpus construction for machine learning: «Taiga» syntax tree corpus and parser. In: Proceedings of “CORPORA2017”, International Conference, Saint-Petersbourg (2017)

    Google Scholar 

  22. Panchenko, A., et al.: RUSSE’2018: a shared task on word sense induction for the Russian language. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue”, Moscow, Russia. RSUH, pp. 547–564 (2018)

    Google Scholar 

  23. Lopukhina, A.A., et al.: Active Dictionary of the Russian Language [Aktivnyj slovar’ russkogo yazyka], vol. 3. Publishing House Nestor-Istoria, Moscow (2017)

    Google Scholar 

  24. Ozhegov, S.I.: Explanatory Dictionary of the Russian Language. Ed. by Skvortsova S.I., 8, p. 1376 (2014)

    Google Scholar 

  25. Loukachevitch, N.: Corpus-based check-up for thesaurus. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5773–5779 (2019)

    Google Scholar 

  26. Mikolov, T., Chen, K., Corrado G., Dean, J. Efficient estimation of word representations in vector space. In: Proceedings of Workshop at ICLR (2013)

    Google Scholar 

  27. Korobov, M.: Morphological analyzer and generator for Russian and Ukrainian languages. In: Analysis of Images, Social Networks and Texts, pp. 320–332 (2015)

    Google Scholar 

  28. Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, Dmitry I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15

    Chapter  Google Scholar 

  29. Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual transformers for Russian language. arXiv preprint arXiv:1905.07213 (2019)

Download references

Acknowledgments

The work is partially supported by the RFBR foundation (project N 18-00-01226 (18-00-01240)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Bolshina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolshina, A., Loukachevitch, N. (2020). Automatic Labelling of Genre-Specific Collections for Word Sense Disambiguation in Russian. In: Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds) Artificial Intelligence. RCAI 2020. Lecture Notes in Computer Science(), vol 12412. Springer, Cham. https://doi.org/10.1007/978-3-030-59535-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59535-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59534-0

  • Online ISBN: 978-3-030-59535-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics