Abstract
Supervised word sense disambiguation (WSD) models suffer from the knowledge acquisition bottleneck: the semantic annotation of large text collections is very time-consuming and requires much effort from experts. In this article we address the issue of the lack of sense-annotated data for the WSD task in Russian. We present an approach that is able to automatically generate text collections and annotate them with word senses. This method is based on the substitution and exploits monosemous relatives (related unambiguous entries) that can be located at relatively long distances from a target ambiguous word. Moreover, we present a similarity-based ranking procedure that enables to sort and filter monosemous relatives. Our experiments with WSD models, that rely on contextualized embeddings ELMo and BERT, have proven that our method can boost the overall performance. The proposed approach is knowledge-based and relies on the Russian thesaurus RuWordNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The source code of our algorithm and experiments is publicly available at: https://github.com/loenmac/russian_wsd_data.
References
Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In: Proceedings of the workshop on Human Language Technology, pp. 303–308. Association for Computational Linguistics (1993)
Taghipour, K., Ng, H.T.: One million sense-tagged instances for word sense disambiguation and induction. In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pp. 338–344 (2015)
Martinez, D., Agirre, E., Wang, X.: Word relatives in context for word sense disambiguation. In: Proceedings of the Australasian Language Technology Workshop 2006, pp. 42–50 (2006)
Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2227–2237 (2018)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)
Leacock, C., Miller, G.A., Chodorow, M.: Using corpus statistics and WordNet relations for sense identification. Comput. Linguist. 24(1), 147–165 (1998)
Miller, G.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Przybyła, P.: How big is big enough? Unsupervised word sense disambiguation using a very large corpus. arXiv preprint arXiv:1710.07960 (2017)
Mihalcea, R., Moldovan, D.I.: An iterative approach to word sense disambiguation. In: FLAIRS Conference, pp. 219–223 (2000)
Seo, H.C., Chung, H., Rim, H.C., Myaeng, S.H., Kim, S.H.: Unsupervised word sense disambiguation using WordNet relatives. Comput. Speech Lang. 18(3), 253–273 (2004)
Yuret, D.: KU: word sense disambiguation by substitution. In: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 207–213. Association for Computational Linguistics (2007)
Mihalcea, R.: Bootstrapping large sense tagged corpora. In: Proceedings of the Third International Conference on Language Resources and Evaluation (LREC-2002), Las Palmas, Canary Islands, Spain, vol. 1999 (2002)
Loukachevitch, N., Chetviorkin, I.: Determining the most frequent senses using Russian linguistic ontology RuThes. In: Proceedings of the Workshop on Semantic Resources and Semantic Annotation for Natural Language Processing and the Digital Humanities at NODALIDA 2015, pp. 21–27 (2015)
Henrich, V., Hinrichs, E., Vodolazova, T.: WebCAGe: a web-harvested corpus annotated with GermaNet senses. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 387–396. Association for Computational Linguistics (2012)
Agirre, E., De Lacalle, O.L.: Publicly available topic signatures for all WordNet nominal senses. In: LREC (2004)
Pasini, T., Navigli, R.: Train-O-Matic: large-scale supervised word sense disambiguation in multiple languages without manual training data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 78–88 (2017)
Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41(2), 10 (2009)
Wiedemann, G., Remus, S., Chawla, A., Biemann, C.: Does BERT make any sense? Interpretable word sense disambiguation with contextualized embeddings. arXiv preprint arXiv:1909.10430 (2019)
Kutuzov, A., Kuzmenko, E.: To lemmatize or not to lemmatize: how word normalisation affects ELMo performance in word sense disambiguation. In: Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing, pp. 22–28 (2019)
Loukachevitch, N.V., Lashevich, G., Gerasimova, A.A., Ivanov, V.V., Dobrov, B.V.: Creating Russian WordNet by conversion. In: Proceedings of Conference on Computational linguistics and Intellectual technologies Dialog-2016, pp. 405–415 (2016)
Shavrina, T., Shapovalova, O.: To the methodology of corpus construction for machine learning: «Taiga» syntax tree corpus and parser. In: Proceedings of “CORPORA2017”, International Conference, Saint-Petersbourg (2017)
Panchenko, A., et al.: RUSSE’2018: a shared task on word sense induction for the Russian language. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue”, Moscow, Russia. RSUH, pp. 547–564 (2018)
Lopukhina, A.A., et al.: Active Dictionary of the Russian Language [Aktivnyj slovar’ russkogo yazyka], vol. 3. Publishing House Nestor-Istoria, Moscow (2017)
Ozhegov, S.I.: Explanatory Dictionary of the Russian Language. Ed. by Skvortsova S.I., 8, p. 1376 (2014)
Loukachevitch, N.: Corpus-based check-up for thesaurus. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5773–5779 (2019)
Mikolov, T., Chen, K., Corrado G., Dean, J. Efficient estimation of word representations in vector space. In: Proceedings of Workshop at ICLR (2013)
Korobov, M.: Morphological analyzer and generator for Russian and Ukrainian languages. In: Analysis of Images, Social Networks and Texts, pp. 320–332 (2015)
Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, Dmitry I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15
Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual transformers for Russian language. arXiv preprint arXiv:1905.07213 (2019)
Acknowledgments
The work is partially supported by the RFBR foundation (project N 18-00-01226 (18-00-01240)).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bolshina, A., Loukachevitch, N. (2020). Automatic Labelling of Genre-Specific Collections for Word Sense Disambiguation in Russian. In: Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds) Artificial Intelligence. RCAI 2020. Lecture Notes in Computer Science(), vol 12412. Springer, Cham. https://doi.org/10.1007/978-3-030-59535-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-59535-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59534-0
Online ISBN: 978-3-030-59535-7
eBook Packages: Computer ScienceComputer Science (R0)