Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Empirical Analysis of Image-Based Learning Techniques for Malware Classification

  • Chapter
  • First Online:
Malware Analysis Using Artificial Intelligence and Deep Learning

Abstract

In this chapter, we consider malware classification using deep learning techniques and image-based features. We employ a wide variety of deep learning techniques, including multilayer perceptrons (MLP), convolutional neural networks (CNN), long short-term memory (LSTM), and gated recurrent units (GRU). Among our CNN experiments, transfer learning plays a prominent role—specifically, we test the VGG-19 and ResNet152 models. As compared to previous work, the results presented in this chapter are based on a larger and more diverse malware dataset, we consider a wider array of features, and we experiment with a much greater variety of learning techniques. Consequently, our results are the most comprehensive and complete that have yet been published.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adware:win32/hotbar. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Hotbar&threatId=6204.

  2. Austin, Thomas H., Eric Filiol, Sébastien Josse, and Mark Stamp. 2013. Exploring hidden Markov models for virus analysis: A semantic approach. In 46th Hawaii international conference on system sciences, HICSS 2013, Wailea, HI, USA, January 7–10, 2013, 5039–5048. IEEE Computer Society.

    Google Scholar 

  3. Backdoor:win32/cycbot.g. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Cycbot.G.

  4. Backdoor:win32/zegost.ad. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3AWin32%2FZegost.AD.

  5. Baysa, Donabelle, Richard M. Low, and Mark Stamp. 2013. Structural entropy and metamorphic malware. Journal of Computer Virology and Hacking Techniques 9 (4): 179–192.

    Article  Google Scholar 

  6. Bhodia, Niket, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. 2019. Transfer learning for image-based malware classification. https://arxiv.org/abs/1903.11551.

  7. Carrera, Ero. 2019. pefile 2019.4.18. https://pypi.org/project/pefile/.

  8. Damodaran, Anusha, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark Stamp. 2017. A comparison of static, dynamic, and hybrid analysis for malware detection. Journal of Computer Virology and Hacking Techniques 13 (1): 1–12.

    Article  Google Scholar 

  9. Gupta, Arpit. 2018. Alexa blogs: How Alexa is learning to converse more naturally. https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally.

  10. Jain, Mugdha, William Andreopoulos, and Mark Stamp. 2020. Convolutional neural networks and extreme learning machines for malware classification. Journal of Computer Virology and Hacking Techniques. To appear.

    Google Scholar 

  11. Khaitan, Pranav. 2016. Google AI blog: Chat smarter with Allo. https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html.

  12. Kim, Samuel. 2018. PE header analysis for malware detection. Master’s thesis, San Jose State University. https://scholarworks.sjsu.edu/etd_projects/624/.

  13. Levy, Steven. 2016. The iBrain is here—and it’s already inside your phone. Wired. https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/.

  14. McKinney, Wes. 2020. Pandas 1.0.5: Powerful data structures for data analysis, time series, and statistics. https://pypi.org/project/pandas/.

  15. Nappa, Antonio, M. Zubair Rafique, and Juan Caballero. 2015. The malicia dataset: identification and analysis of drive-by download operations. International Journal of Information Security 14 (1): 15–33.

    Article  Google Scholar 

  16. Nataraj, L., S. Karthikeyan, G. Jacob, and B.S. Manjunath. 2011. Malware images: Visualization and automatic classification. In Proceedings of the 8th International Symposium on Visualization for Cyber Security, VizSec ’11.

    Google Scholar 

  17. Travis Oliphant. 2006. NumPy: A guide to NumPy. http://www.numpy.org/.

  18. Paszke, Adam, Sam Gross, Soumith Chintala, and Gregory Chanan. 2016. PyTorch: From research to production. https://pytorch.org/.

  19. Prajapati, Pratikkumar. 2020. Github repository. https://github.com/pratikpv/malware_detect2.

  20. Pws:win32/delfinject. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=-2147241365.

  21. Pws:win32/lolyda.bf. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FLolyda.BF.

  22. Pws:win32/onlinegames. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames.

  23. Pws:win32/zbot. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/Zbot&threatId=-2147368817.

  24. Simonyan, Karen, and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556.

  25. Singh, Tanuvir, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark Stamp. 2016. Support vector machines and malware detection. Journal of Computer Virology and Hacking Techniques 12 (4): 203–212.

    Article  Google Scholar 

  26. Spruston, Nelson. 2019. Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews Neuroscience 9: 206–221. https://www.nature.com/articles/nrn2286.

  27. Stamp, Mark. 2020. A selective survey of deep learning techniques and their application to malware analysis. In Malware Analysis using Artificial Intelligence and Deep Learning, chapter 1, Stamp, Mark, Mamoun Alazab, and Andrii Shalaginov, ed. 1–48. Springer.

    Google Scholar 

  28. Toderici, Annie H., and Mark Stamp. 2013. Chi-squared distance and metamorphic virus detection. Journal of Computer Virology and Hacking Techniques 9 (1): 1–14.

    Article  Google Scholar 

  29. Trojandownloader:win32/adload. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%3AWin32%2FAdload.

  30. Trojandownloader:win32/agent. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Agent&ThreatID=14992.

  31. Trojandownloader:win32/renos. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054.

  32. Trojan:win32/bho. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778.

  33. Trojan:win32/startpage. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435.

  34. Virtool:win32/ceeinject. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject.

  35. Win32/alureon. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Alureon.

  36. Win32/fakerean. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean.

  37. Win32/obfuscator. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Obfuscator&threatId=.

  38. Win32/rbot. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Rbot&threatId=.

  39. Win32/vobfus. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vobfus&threatId=.

  40. Win32/vundo. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vundo&threatId=.

  41. Win32/winwebsec. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec.

  42. Wong, Wing, and Mark Stamp. 2006. Hunting for metamorphic engines. Journal in Computer Virology 2 (3): 211–229.

    Article  Google Scholar 

  43. Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. https://arxiv.org/abs/1609.08144.

  44. Yajamanam, S., V. R. S. Selvin, F. Di Troia, and Mark Stamp. 2018. Deep learning versus gist descriptors for image-based malware classification. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, ICISSP 2018, 553–561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stamp .

Editor information

Editors and Affiliations

Appendix: Confusion Matrices

Appendix: Confusion Matrices

Fig. 2
figure 2

Confusion matrix for MLP experiment

Fig. 3
figure 3

Confusion matrix for CNN 2-d experiment

Fig. 4
figure 4

Confusion matrix for CNN 1-d experiment

Fig. 5
figure 5

Confusion matrix for opcode-based CNN experiment

Fig. 6
figure 6

Confusion matrix for GRU experiment

Fig. 7
figure 7

Confusion matrix for stacked LSTM-GRU experiment

Fig. 8
figure 8

Confusion matrix for VGG-19 experiment

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prajapati, P., Stamp, M. (2021). An Empirical Analysis of Image-Based Learning Techniques for Malware Classification. In: Stamp, M., Alazab, M., Shalaginov, A. (eds) Malware Analysis Using Artificial Intelligence and Deep Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-62582-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62582-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62581-8

  • Online ISBN: 978-3-030-62582-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics