Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Action Representation for Intelligent Agents Using Memory Nets

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019)

Abstract

Memory Nets (Eggert et al.: Memory Nets: Knowledge Representation for Intelligent Agent Operations in Real World, 2019) are a knowledge representation schema targeted at autonomous Intelligent Agents (IAs) operating in real world. Memory Nets are targeted at leveraging the large body of openly available semantic information, and incrementally accumulating additional knowledge from situated interaction. Here we extend the Memory Net concepts by action representation. In the first part of this paper, we recap the basic domain independent features of Memory Nets and the relation to measurements and actuator capabilities as available by autonomous entities. In the second part we show how the action representation can be created using the concepts of Memory Nets and relate actions that are executable by an IA with tools, objects and the actor itself. Further, we show how action specific information can be extracted and inferred from the created graph. The combination of the two main parts provide an important step towards a knowledge base framework for researching how to create IAs that continuously expand their knowledge about the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The deeper underlying reason is the contradiction that arises in classical class/instance ontologies when class concepts are interpreted as categorical prototypes and when they are interpreted as the set of instances that together describe a class.

References

  1. Antoniou, G., Groth, P., Harmelen, F.V.V., Hoekstra, R.: A Semantic Web Primer. The MIT Press, Cambridge (2012)

    Google Scholar 

  2. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: In Proceedings of the Coling-ACL (1998)

    Google Scholar 

  3. Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoglu, A.K., Bartels, G.: Knowrob 2.0 - a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: International Conference on Robotics and Automation (ICRA), Brisbane, Australia (2018)

    Google Scholar 

  4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. A new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284(5), 34–43 (2001)

    Google Scholar 

  5. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  6. Chai, J.Y., Gao, Q., She, L., Yang, S., Saba-Sadiya, S., Xu, G.: Language to action: towards interactive task learning with physical agents. In: AAMAS, p. 6 (2018)

    Google Scholar 

  7. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8(2), 240–247 (1969)

    Article  Google Scholar 

  8. Degen, W., Herre, H.: What is an upper level ontology. In: Workshop on Ontologies. Citeseer (2001)

    Google Scholar 

  9. Eggert, J., Deigmöller, J., Fischer, L., Richter, A.: Memory nets: Knowledge representation for intelligent agent operations in real world. In: Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2019, Volume 2: KEOD, Vienna, Austria, 17–19 September 2019, pp. 115–126 (2019). https://doi.org/10.5220/0008068101150126

  10. Fischer, L., et al.: Which tool to use? Grounded reasoning in everyday environments with assistant robots. In: Proceedings of the 11th Cognitive Robotics Workshop 2018, pp. 3–10 (2018). http://ceur-ws.org/Vol-2325/paper-03.pdf

  11. Franklin, S., Graesser, A.: Is It an agent, or just a program?: a taxonomy for autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0013570

    Chapter  Google Scholar 

  12. Horton, T.E., Chakraborty, A., Amant, R.S.: Affordances for robots: a brief survey. AVANT 2, 70–84 (2012)

    Google Scholar 

  13. Kasabov, N., Kozma, R.: Introduction: hybrid intelligent adaptive systems. Int. J. Intell. Syst. 13(6), 453–454 (1998)

    Article  Google Scholar 

  14. Knublauch, H., Oberle, D., Tetlow, P., Wallace, E., Pan, J., Uschold, M.: A semantic web primer for object-oriented software developers. W3c working group note, W3C (2006)

    Google Scholar 

  15. Kunze, L., Roehm, T., Beetz, M.: Towards semantic robot description languages. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5589–5595 (2011). https://doi.org/10.1109/ICRA.2011.5980170

  16. Kurzweil, R.: The Age of Spiritual Machines: When Computers Exceed Human Intelligence. Viking, New York (1999)

    Google Scholar 

  17. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  18. Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: ORO, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3548–3553. IEEE (2010)

    Google Scholar 

  19. Mazzocchi, S.: Closed world vs. open world: the first semantic web battle (2005). http://web.archive.org/web/20090624113015/www.betaversion.org/~stefano/linotype/news/91/. Accessed 23 April 2019

  20. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  21. Mühlig, M., Fischer, L., Hasler, S., Deigmöller, J.: A flexible heterogeneous multi-entity system. In: ICHMS 2020: 1st IEEE International Conference on Human-Machine Systems (2019, submitted)

    Google Scholar 

  22. Neo4j: Neo4j graph platform (2019). https://neo4j.com/product/. Accessed 23 April 2019

  23. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  24. Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28, pp. 7–10 (2002)

    Google Scholar 

  25. Rebhan, S., Richter, A., Eggert, J.: Demand-driven visual information acquisition. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 124–133. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04667-4_13

    Chapter  Google Scholar 

  26. Röhrbein, F., Eggert, J., Körner, E.: Child-friendly divorcing: incremental hierarchy learning in Bayesian networks. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2711–2716 (2009)

    Google Scholar 

  27. Ruggeri, A., Caro, L.D.: Linguistic affordances: Making sense of word senses. In: AIC@AI*IA (2013)

    Google Scholar 

  28. Simmons, R.: Semantic networks: their computation and use for understanding English sentences. In: Computer Models of Thought and Language (1973)

    Google Scholar 

  29. Singhal, A.: Introducing the knowledge graph: things, not strings (2012). http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html. Accessed 23 April 2019

  30. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)

    Google Scholar 

  31. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667

  32. Tenorth, M., Klank, U., Pangercic, D., Beetz, M.: Web-enabled robots. IEEE Robot. Autom. Mag. 18(2), 58–68 (2011). https://doi.org/10.1109/MRA.2011.940993

    Article  Google Scholar 

  33. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Commun. ACM 57, 78–85 (2014). http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext

  34. White, D.: Kant on Plato and the metaphysics of purpose. Hist. Philos. Q. 10(1), 67–82 (1993)

    Google Scholar 

  35. Wikipedia: Intelligent agent – Wikipedia, the free encyclopedia (2019). https://en.wikipedia.org/wiki/Intelligent_agent#CITEREFKasabov1998. Accessed 23 Apr 2019

  36. Wood, D., Zaidman, M., Ruth, L., Hausenblas, M.: Linked Data: Structured Data on the Web, 1st edn. Manning Publications, New York (2014)

    Google Scholar 

  37. Wyatt, J.L., et al.: Self-understanding and self-extension: a systems and representational approach. IEEE Trans. Auton. Ment. Dev. 2(4), 282–303 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Deigmöller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eggert, J., Deigmöller, J., Fischer, L., Richter, A. (2020). Action Representation for Intelligent Agents Using Memory Nets. In: Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2019. Communications in Computer and Information Science, vol 1297. Springer, Cham. https://doi.org/10.1007/978-3-030-66196-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66196-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66195-3

  • Online ISBN: 978-3-030-66196-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics