Abstract
Memory Nets (Eggert et al.: Memory Nets: Knowledge Representation for Intelligent Agent Operations in Real World, 2019) are a knowledge representation schema targeted at autonomous Intelligent Agents (IAs) operating in real world. Memory Nets are targeted at leveraging the large body of openly available semantic information, and incrementally accumulating additional knowledge from situated interaction. Here we extend the Memory Net concepts by action representation. In the first part of this paper, we recap the basic domain independent features of Memory Nets and the relation to measurements and actuator capabilities as available by autonomous entities. In the second part we show how the action representation can be created using the concepts of Memory Nets and relate actions that are executable by an IA with tools, objects and the actor itself. Further, we show how action specific information can be extracted and inferred from the created graph. The combination of the two main parts provide an important step towards a knowledge base framework for researching how to create IAs that continuously expand their knowledge about the world.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The deeper underlying reason is the contradiction that arises in classical class/instance ontologies when class concepts are interpreted as categorical prototypes and when they are interpreted as the set of instances that together describe a class.
References
Antoniou, G., Groth, P., Harmelen, F.V.V., Hoekstra, R.: A Semantic Web Primer. The MIT Press, Cambridge (2012)
Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: In Proceedings of the Coling-ACL (1998)
Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoglu, A.K., Bartels, G.: Knowrob 2.0 - a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: International Conference on Robotics and Automation (ICRA), Brisbane, Australia (2018)
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. A new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284(5), 34–43 (2001)
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)
Chai, J.Y., Gao, Q., She, L., Yang, S., Saba-Sadiya, S., Xu, G.: Language to action: towards interactive task learning with physical agents. In: AAMAS, p. 6 (2018)
Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8(2), 240–247 (1969)
Degen, W., Herre, H.: What is an upper level ontology. In: Workshop on Ontologies. Citeseer (2001)
Eggert, J., Deigmöller, J., Fischer, L., Richter, A.: Memory nets: Knowledge representation for intelligent agent operations in real world. In: Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2019, Volume 2: KEOD, Vienna, Austria, 17–19 September 2019, pp. 115–126 (2019). https://doi.org/10.5220/0008068101150126
Fischer, L., et al.: Which tool to use? Grounded reasoning in everyday environments with assistant robots. In: Proceedings of the 11th Cognitive Robotics Workshop 2018, pp. 3–10 (2018). http://ceur-ws.org/Vol-2325/paper-03.pdf
Franklin, S., Graesser, A.: Is It an agent, or just a program?: a taxonomy for autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0013570
Horton, T.E., Chakraborty, A., Amant, R.S.: Affordances for robots: a brief survey. AVANT 2, 70–84 (2012)
Kasabov, N., Kozma, R.: Introduction: hybrid intelligent adaptive systems. Int. J. Intell. Syst. 13(6), 453–454 (1998)
Knublauch, H., Oberle, D., Tetlow, P., Wallace, E., Pan, J., Uschold, M.: A semantic web primer for object-oriented software developers. W3c working group note, W3C (2006)
Kunze, L., Roehm, T., Beetz, M.: Towards semantic robot description languages. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5589–5595 (2011). https://doi.org/10.1109/ICRA.2011.5980170
Kurzweil, R.: The Age of Spiritual Machines: When Computers Exceed Human Intelligence. Viking, New York (1999)
Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)
Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: ORO, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3548–3553. IEEE (2010)
Mazzocchi, S.: Closed world vs. open world: the first semantic web battle (2005). http://web.archive.org/web/20090624113015/www.betaversion.org/~stefano/linotype/news/91/. Accessed 23 April 2019
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Mühlig, M., Fischer, L., Hasler, S., Deigmöller, J.: A flexible heterogeneous multi-entity system. In: ICHMS 2020: 1st IEEE International Conference on Human-Machine Systems (2019, submitted)
Neo4j: Neo4j graph platform (2019). https://neo4j.com/product/. Accessed 23 April 2019
Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)
Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28, pp. 7–10 (2002)
Rebhan, S., Richter, A., Eggert, J.: Demand-driven visual information acquisition. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 124–133. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04667-4_13
Röhrbein, F., Eggert, J., Körner, E.: Child-friendly divorcing: incremental hierarchy learning in Bayesian networks. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2711–2716 (2009)
Ruggeri, A., Caro, L.D.: Linguistic affordances: Making sense of word senses. In: AIC@AI*IA (2013)
Simmons, R.: Semantic networks: their computation and use for understanding English sentences. In: Computer Models of Thought and Language (1973)
Singhal, A.: Introducing the knowledge graph: things, not strings (2012). http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html. Accessed 23 April 2019
Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)
Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667
Tenorth, M., Klank, U., Pangercic, D., Beetz, M.: Web-enabled robots. IEEE Robot. Autom. Mag. 18(2), 58–68 (2011). https://doi.org/10.1109/MRA.2011.940993
Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Commun. ACM 57, 78–85 (2014). http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
White, D.: Kant on Plato and the metaphysics of purpose. Hist. Philos. Q. 10(1), 67–82 (1993)
Wikipedia: Intelligent agent – Wikipedia, the free encyclopedia (2019). https://en.wikipedia.org/wiki/Intelligent_agent#CITEREFKasabov1998. Accessed 23 Apr 2019
Wood, D., Zaidman, M., Ruth, L., Hausenblas, M.: Linked Data: Structured Data on the Web, 1st edn. Manning Publications, New York (2014)
Wyatt, J.L., et al.: Self-understanding and self-extension: a systems and representational approach. IEEE Trans. Auton. Ment. Dev. 2(4), 282–303 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Eggert, J., Deigmöller, J., Fischer, L., Richter, A. (2020). Action Representation for Intelligent Agents Using Memory Nets. In: Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2019. Communications in Computer and Information Science, vol 1297. Springer, Cham. https://doi.org/10.1007/978-3-030-66196-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-66196-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66195-3
Online ISBN: 978-3-030-66196-0
eBook Packages: Computer ScienceComputer Science (R0)