Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DAS-AST: Defending Against Model Stealing Attacks Based on Adaptive Softmax Transformation

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12612))

Included in the following conference series:

Abstract

Deep Neural Networks (DNNs) have been widely applied to diverse real life applications and dominated in most cases. Considering the hardware consumption for DNN and large amount of labeled training data to support the performance, machine-learning-as-a-service (MLaaS) came into being. However, malicious attacker takes the opportunity to launch possible deep model stealing attacks via black-box access, leading to a great security threat to the interests of the model agency. Addressing to the problem, defensive methods are designed, mainly categorized to truncated-based and perturbation-based, to reduce the stealing efficiency or increase the attack cost, i.e. more queries. Essentially, it is still a challenge to fully defend the deep model stealing attack. In the paper, we propose a novel defense algorithm based on adaptive softmax transformation by introducing posterior probability perturbation, namely DAS-AST. We evaluate the proposed defense against several state-of-the-art attack strategies, and compare the performance with other defense methods. The experiment results show that our defense is effective across a wide range of challenging datasets and performs better than the existing defenses. More specifically, it can degrade the average accuracy of the stolen model at least 30%, without affect the accuracy of target DNN model on original tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ‘Amazon machine learning,’ https://aws.amazon.com/aml/.

  2. 2.

    ‘Azure machine learning,’ https://azure.microsoft.com/en-us/overview/machine-learning.

  3. 3.

    MNIST can be download at: http://yann.lecun.com/exdb/mnist/.

  4. 4.

    Fashion-MNIST can be download at: https://www.worldlink.com.cn/en/osdir/fashion-mnist.html.

  5. 5.

    CIFAR10 can be download at: https://www.cs.toronto.edu/ kriz/cifar.html.

References

  1. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hacking smart machines with smarter ones: how to extract meaningful data from machine learning classifiers. Int. J. Secur. Netw. 10(3), 137–150 (2015)

    Article  Google Scholar 

  2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420 (2018)

  3. Correia-Silva, J.R., Berriel, R.F., Badue, C., de Souza, A.F., Oliveira-Santos, T.: Copycat CNN: stealing knowledge by persuading confession with random non-labeled data. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  4. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  5. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)

    Google Scholar 

  6. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In: 23rd \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 2014), pp. 17–32 (2014)

    Google Scholar 

  7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2016)

    Google Scholar 

  9. Höhna, S., Coghill, L.M., Mount, G.G., Thomson, R.C., Brown, J.M.: P3: Phylogenetic posterior prediction in RevBayes. Mol. Biol. Evol. 35(4), 1028–1034 (2018)

    Article  Google Scholar 

  10. Juuti, M., Szyller, S., Marchal, S., Asokan, N.: Prada: protecting against dnn model stealing attacks. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 512–527. IEEE (2019)

    Google Scholar 

  11. Kesarwani, M., Mukhoty, B., Arya, V., Mehta, S.: Model extraction warning in MLaaS paradigm. In: Proceedings of the 34th Annual Computer Security Applications Conference, pp. 371–380 (2018)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks (2012)

    Google Scholar 

  13. LeCun, Y., et al.: LeNet-5, convolutional neural networks, vol. 20, no. 5, p. 14 (2015). http://yann.lecun.com/exdb/lenet

  14. Lee, T., Edwards, B., Molloy, I., Su, D.: Defending against machine learning model stealing attacks using deceptive perturbations. arXiv preprint arXiv:1806.00054 (2018)

  15. Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 641–647 (2005)

    Google Scholar 

  16. Milli, S., Schmidt, L., Dragan, A.D., Hardt, M.: Model reconstruction from model explanations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 1–9 (2019)

    Google Scholar 

  17. Murphy, G.C., Notkin, D.: Lightweight source model extraction. ACM SIGSOFT Softw. Eng. Notes 20(4), 116–127 (1995)

    Article  Google Scholar 

  18. Nelson, B., et al.: Misleading learners: co-opting your spam filter. In: Yu, P.S., Tsai, J.J.P. (eds.) Machine Learning in Cyber Trust, pp. 17–51. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-88735-7_2

    Chapter  Google Scholar 

  19. Oh, S.J., Schiele, B., Fritz, M.: Towards reverse-engineering black-box neural networks. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 121–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_7

    Chapter  Google Scholar 

  20. Orekondy, T., Schiele, B., Fritz, M.: Knockoff nets: stealing functionality of black-box models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4954–4963 (2019)

    Google Scholar 

  21. Orekondy, T., Schiele, B., Fritz, M.: Prediction poisoning: towards defenses against DNN model stealing attacks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  22. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

    Google Scholar 

  23. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.: Towards the science of security and privacy in machine learning. arXiv preprint arXiv:1611.03814 (2016)

  24. Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., Backes, M.: ML-leaks: model and data independent membership inference attacks and defenses on machine learning models. arXiv preprint arXiv:1806.01246 (2018)

  25. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-CAM: why did you say that? Visual explanations from deep networks via gradient-based localization (2016)

    Google Scholar 

  26. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  27. Siciliano, R., Aria, M., D’Ambrosio, A.: Posterior prediction modelling of optimal trees. In: Brito, P. (ed.) COMPSTAT 2008, pp. 323–334. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-7908-2084-3_27

    Chapter  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, May 2015

    Google Scholar 

  29. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction APIs. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 2016), pp. 601–618 (2016)

    Google Scholar 

  30. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 36–52. IEEE (2018)

    Google Scholar 

  31. Yoshida, K., Kubota, T., Shiozaki, M., Fujino, T.: Model-extraction attack against FPGA-DNN accelerator utilizing correlation electromagnetic analysis. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 318–318. IEEE (2019)

    Google Scholar 

  32. Zheng, H., Ye, Q., Hu, H., Fang, C., Shi, J.: BDPL: a boundary differentially private layer against machine learning model extraction attacks. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 66–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_4

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY19F020025, the Major Special Funding for Science and Technology Innovation 2025 in Ningbo under Grant No. 2018B10063, the National Key Research and Development Program of China under Grant No. 2018AAA0100800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Wu, C., Shen, S., Zhang, X., Chen, J. (2021). DAS-AST: Defending Against Model Stealing Attacks Based on Adaptive Softmax Transformation. In: Wu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2020. Lecture Notes in Computer Science(), vol 12612. Springer, Cham. https://doi.org/10.1007/978-3-030-71852-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71852-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71851-0

  • Online ISBN: 978-3-030-71852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics