Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distributed Key Generation for SM9-Based Systems

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12612))

Included in the following conference series:

Abstract

Identity-Based Cryptography (IBC) is a useful tool for the security of IoT devices, but securely deploying this cryptographic technique to the IoT systems is quite challenging. For instance, a leakage of the master secret key will result in the leakage of all IoT devices’ private keys. SM9 is the only approved IBC algorithm standard in China. It is critical to have mechanisms to protect the SM9 master secret keys. In this work, to reduce the risk of the master secret key leakage, we propose a (tn)-threshold distributed private key generation scheme for SM9 with some techniques from multiparty computation. Our scheme is compatible with all the three SM9 sub-algorithms (i.e., the encryption, signature and key agreement). It is also provably secure and completely eliminates the single point of failures in SM9 that is concerned by the industry. The experimental analysis indicates that the proposed scheme is efficient, e.g., up to 1 million private key generation requests can be handled per day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Sony PS3 and Bitcoin crypto hacks. https://tinyurl.com/udg5tyg.

  2. 2.

    DKG vs. DPKG: DPKG is a branch of DKG. Within IBCs, DPKG captures the property of distributedly generating user private keys more precisely. Besides user private keys, our scheme also generates the master secret key distributedly.

  3. 3.

    \(n \ge 2t+1\) is required because the distributed extraction phase of SM9 involves secret reconstruction from 2t-privately Shamir shares.

References

  1. GM/T 0044.1-2016: identity-based cryptographic algorithms SM9-part 1: General. Technical report (2016)

    Google Scholar 

  2. GM/T 0044.5-2016: identity-based cryptographic algorithms SM9-part 5: Parameter definition. Technical report (2016)

    Google Scholar 

  3. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  4. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure multiparty computation. J. Cryptology 30(1), 58–151 (2017)

    Article  MathSciNet  Google Scholar 

  5. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_10

    Chapter  Google Scholar 

  6. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Rudnicki, P. (ed.) PODC 1989, pp. 201–209. ACM (1989)

    Google Scholar 

  7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  8. Boyen, X.: General Ad Hoc encryption from exponent inversion IBE. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_23

    Chapter  Google Scholar 

  9. Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust authorities in pairing based cryptosystems. In: Davida, G., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45831-X_18

    Chapter  Google Scholar 

  10. Cheng, Z.: The SM9 cryptographic schemes. IACR Cryptology ePrint Archive 2017, 117 (2017). https://eprint.iacr.org/2017/117.pdf

  11. Cheng, Z.: Security analysis of SM9 key agreement and encryption. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14234-6_1

    Chapter  Google Scholar 

  12. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_19

    Chapter  Google Scholar 

  13. Gao, W., Wang, G., Wang, X., Chen, K.: Generic construction of certificate-based encryption from certificateless encryption revisited. Comput. J. 58(10), 2747–2757 (2015)

    Article  Google Scholar 

  14. Geisler, M., Smart, N.P.: Distributing the key distribution centre in Sakai–Kasahara based systems. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 252–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6_15

    Chapter  Google Scholar 

  15. Gentry, C.: Certificate-based encryption and the certificate revocation problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_17

    Chapter  Google Scholar 

  16. Goldwasser, S., Ben-Or, M., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computing. In: STOC, pp. 1–10 (1988)

    Google Scholar 

  17. Lai, J., Kou, W.: Self-generated-certificate public key encryption without pairing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 476–489. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_31

    Chapter  MATH  Google Scholar 

  18. Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Secure key issuing in id-based cryptography. In: Hogan, J.M., Montague, P., Purvis, M.K., Steketee, C. (eds.) ACSW Frontiers 2004, CRPIT, vol. 32, pp. 69–74 (2004)

    Google Scholar 

  19. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_21

    Chapter  Google Scholar 

  20. Long, Y., Xiong, F.: Collaborative generations of SM9 private key and digital signature using homomorphic encryption. In: ICCCS 2020, pp. 76–81. IEEE (2020)

    Google Scholar 

  21. Sakai, R., Kasahara, M.: Id based cryptosystems with pairing on elliptic curve. IACR Cryptology ePrint 2003, 54 (2003). https://eprint.iacr.org/2003/054.pdf

  22. Smart, N.P.: Cryptography Made Simple. Information Security and Cryptography. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21936-3

    Book  MATH  Google Scholar 

  23. Xu, S., Ren, X., Yuan, F., Guo, C., Yang, S.: A secure key issuing scheme of SM9. Comput. Appl. Softw. 37(01) (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported in part by National Natural Science Foundation of China (Nos. 61772520, 61802392, 61972094, 61472416, 61632020), in part by Key Research and Development Project of Zhejiang Province (Nos. 2017C01062, 2020C01078), in part by Beijing Municipal Science and Technology Commission (Project Number Z191100007119007 and Z191100007119002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Zhang , Huan Zou , Cong Zhang , Yuting Xiao or Yang Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R., Zou, H., Zhang, C., Xiao, Y., Tao, Y. (2021). Distributed Key Generation for SM9-Based Systems. In: Wu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2020. Lecture Notes in Computer Science(), vol 12612. Springer, Cham. https://doi.org/10.1007/978-3-030-71852-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71852-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71851-0

  • Online ISBN: 978-3-030-71852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics