Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

COVID-19 Patient Care: A Content-Based Collaborative Filtering Using Intelligent Recommendation System

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity360° 2020)

Abstract

COVID-19 is a more transferable illness caused by a new novel coronavirus. It is highly emerging with efficient biosensors such as sensitive and selective that afford the diagnostic tools to infer the disease early. It can maintain a personalized healthcare system to evaluate the growth of disease under proper patient care. To discover as a personalized technology, the healthcare system prefers collaborative filtering. It can effectively deal with cold-start and sparse-data to conduct useful extensions. Due to the continuous expansion of scaling data in a medical scenario, content-based, collaborative filtering, and similarity metrics are preferred. It relies on the most similar social users or threats when the information is large. Many neighbors gain importance to obtain a set of users with whom a target user is likely to match. Forming communities reveal vulnerable users and also reduce the challenges of collaborative filtering like data-sparsity and cold-start problems. Thus, this framework proposes content-based collaborative filtering using intelligent recommendation systems (CCF-IRS) based on high correlation and shortest neighbor in the social community. The result is shown that the proposed CCF-IRS achieves better accuracy than the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suliman, K., et al.: Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. J. Clin. Microbiol. 58(5) (2020)

    Google Scholar 

  2. Kumar, A., Sharma, K., Singh, H., Naugriya, S., Gill, S., Buyya, R.: A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener. Comput. Syst. 115, 1–19 (2021). https://doi.org/10.1016/j.future.2020.08.046

    Article  Google Scholar 

  3. Singer, M., Baer, H., Long, D., Pavlotski, A.: Introducing medical anthropology: a discipline in action. Rowman & Littlefield (2019)

    Google Scholar 

  4. World Health Organization. Water, sanitation, hygiene, and waste management for SARS-CoV-2, the virus that causes COVID-19: interim guidance, 29 July 2020 (No. WHO/COVID-19/IPC_WASH/2020.4). World Health Organization (2020)

    Google Scholar 

  5. Kuula, J.: The hyperspectral and smartphone technology in CBRNE countermeasures and defence. Jyväskylä Stud. Comput. 256 (2016)

    Google Scholar 

  6. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33(1–2), 21–39 (2012)

    Article  Google Scholar 

  7. Liang, T.: Handbook of COVID-19 prevention and treatment. The First Affiliated Hospital, Zhejiang University School of Medicine. Compiled According to Clinical Experience, 68 (2020)

    Google Scholar 

  8. Jeffery Reeves, J., et al.: Rapid response to COVID-19: health informatics support for outbreak management in an academic health system. J. Am. Med. Inform. Assoc. 27(6), 853–859 (2020). https://doi.org/10.1093/jamia/ocaa037

    Article  Google Scholar 

  9. Fong, S., Dey, N., Chaki, J.: Artificial Intelligence for Coronavirus Outbreak. Springer Singapore, Singapore (2021)

    Book  Google Scholar 

  10. Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P.M., Sundarasekar, R., Thota, C.: A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 82, 375–387 (2018)

    Article  Google Scholar 

  11. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommendations efficiently using homomorphic encryption and data packing. IEEE Trans. Inf. Forensics Secur. 7(3), 1053–1066 (2012)

    Article  Google Scholar 

  12. Xindi, M., et al.: APPLET: a privacy-preserving framework for location-aware recommender system. Sci. China Inf. Sci. 60(9), 092101 (2017)

    Google Scholar 

  13. Liu, K., Giannella, C., Kargupta, H.: A survey of attack techniques on privacy-preserving data perturbation methods. In: Aggarwal, Charu C., Yu, Philip S. (eds.) Privacy-Preserving Data Mining, pp. 359–381. Springer US, Boston, MA (2008). https://doi.org/10.1007/978-0-387-70992-5_15

    Chapter  Google Scholar 

  14. Soni, K., Panchal, G.: Data security in recommendation system using homomorphic encryption. In: Satapathy, S.C., Joshi, A. (eds.) ICTIS 2017. SIST, vol. 83, pp. 308–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63673-3_37

    Chapter  Google Scholar 

  15. Patil K., Jadhav N.: Multi-layer perceptron classifier and Paillier encryption scheme for friend recommendation system. In: International conference on computing, pp. 1–5. IEEE (2017)

    Google Scholar 

  16. Kaur, H., Kumar, N., Batra, S.: An efficient multi-party scheme for privacy preserving collaborative filtering for healthcare recommender system. Future Gener. Comput. Syst. 86, 297–307 (2018)

    Article  Google Scholar 

  17. Chen, S., Rongxing, L., Zhang, J.: A flexible privacy-preserving framework for singular value decomposition under internet of things environment. In: Steghöfer, J-P., Esfandiari, B (eds.) IFIPTM 2017. IAICT, vol. 505, pp. 21–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59171-1_3

    Chapter  Google Scholar 

  18. Li, D., et al.: An algorithm for efficient privacy-preserving item based collaborative filtering. Future Gener. Comput. Syst. 55, 311–320 (2016)

    Article  Google Scholar 

  19. Dou, K., Guo, B., Kuang, L.: A privacy-preserving multimedia recommendation in the context of social network based on weighted noise injection. Multimedia Tools Appl. 78(19), 26907–26926 (2017). https://doi.org/10.1007/s11042-017-4352-3

    Article  Google Scholar 

  20. Polatidis, N., Georgiadis, C.K., Pimenidis, E., Mouratidis, H.: Privacy-preserving collaborative recommendations based on random perturbations. Expert Syst. Appl. 71, 18–25 (2017)

    Article  Google Scholar 

  21. Liu, X., Liu, A., Zhang, X., Li, Z., Liu, G., Zhao, L., Zhou, X.: When differential privacy meets randomized perturbation: a hybrid approach for privacy-preserving recommender system. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 576–591. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55753-3_36

    Chapter  Google Scholar 

  22. Xiong, P., Lefeng, Z., Tianqing, Z., Gang, L., Wanlei, Z.: Private collaborative filtering under untrusted recommender server. Future Gener. Comput. Syst. (2018). https://doi.org/10.1016/j.future.2018.05.077

  23. Goyal, N., Aggarwal, N., Dutta, M.: A novel way of assigning software bug priority using supervised classification on clustered bugs data. In: El-Alfy, E.-S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in intelligent informatics. AISC, vol. 320, pp. 493–501. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11218-3_44

    Chapter  Google Scholar 

  24. Ma, X., Ma, J., Li, H., Jiang, Q., Gao, S.: ARMOR: a trust-based privacy-preserving framework for decentralized friend recommendation in online social networks. Future Gener. Comput. Syst. 79, 82–94 (2018)

    Article  Google Scholar 

  25. Heidari, S., Alborzi, M., Radfar, R., Afsharkazemi, M., Rajabzadeh Ghatari, A.: Big data clustering with varied density based on MapReduce. J Big Data 6(1), 1–16 (2019). https://doi.org/10.1186/s40537-019-0236-x

    Article  Google Scholar 

  26. Al-Turjman, F., Deebak, B.D.: Privacy-aware energy-efficient framework using the internet of medical things for COVID-19. IEEE Internet of Things Mag. 3(3), 64–68 (2020)

    Article  Google Scholar 

  27. Deebak, B.D., Al-Turjman, F.: A novel community-based trust aware recommender systems for big data cloud service networks. Sustain. Cities Soc. 61, 102274 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Deebak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deebak, B.D., Al-Turjman, F. (2021). COVID-19 Patient Care: A Content-Based Collaborative Filtering Using Intelligent Recommendation System. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76063-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76062-5

  • Online ISBN: 978-3-030-76063-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics