Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Review on Cognitive Computational Neuroscience: Overview, Models, and Applications

  • Chapter
  • First Online:
Innovative Trends in Computational Intelligence

Abstract

To understand the working of our biological brain, we primarily focus on three key areas which are computational neuroscience, cognitive science, and artificial intelligence. Computational neuroscience aims at explaining the neural patterns in the brain by using biologically conceivable computational models. Cognitive science aims to explain the behavioral mechanisms of the human brain, whereas artificial intelligence aims to identify complex cognitive tasks and map it together by using a computational model. In recent developments within this field, the integration of these three areas has provided valuable insights. In this work, an overview of cognitive computational neuroscience is provided along with the related models. A detailed investigation into the applications is outlined, followed by a discussion on the possible future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Newell, You can’t Play 20 Questions with Nature and Win: Projective Comments on the Papers of this Symposium (1973)

    Google Scholar 

  2. T.L. Griffiths, F. Lieder, N.D. Goodman, Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7(2), 217–229 (2015)

    Article  Google Scholar 

  3. A. Collins, Why cognitive science. Cogn. Sci. 1(1), 1–2 (1977)

    Article  Google Scholar 

  4. P. Calvo, T. Gomila, Handbook of Cognitive Science: An Embodied Approach (Elsevier, 2008)

    Google Scholar 

  5. J.R. Anderson, C. Lebiere, The Newell test for a theory of cognition. Behav. Brain Sci. 26(5), 587–601 (2003)

    Article  Google Scholar 

  6. J.L. McClelland, D.E. Rumelhart, A distributed model of human learning and memory, in Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 2: Psychological and biological models, (1986), pp. 170–215

    Google Scholar 

  7. M. Minsky, S. Papert, An Introduction to Computational Geometry (Cambridge, HIT, 1969)

    Google Scholar 

  8. N. Chomsky, Rules and representations. Behav. Brain Sci. 3(1), 1–15 (1980)

    Article  Google Scholar 

  9. D. Peebles, R.P. Cooper, Thirty years after Marr’s vision: Levels of analysis in cognitive science. Top. Cogn. Sci. 7(2), 187–190 (2015)

    Article  Google Scholar 

  10. J.A. Fodor, Z.W. Pylyshyn, Connectionism and cognitive architecture: A critical analysis. Cognition 28(1–2), 3–71 (1988)

    Article  Google Scholar 

  11. P. Vugteveen, R. Lenders, P. Van Den Besselaar, The dynamics of interdisciplinary research fields: The case of river research. Scientometrics 100(1), 73–96 (2014)

    Article  Google Scholar 

  12. R. Núñez, M. Allen, R. Gao, C. Miller Rigoli, J. Relaford-Doyle, A. Semenuks, What happened to cognitive science? Nat. Hum. Behav. 3(8), 782–791 (2019)

    Article  Google Scholar 

  13. P.S. Churchland, T.J. Sejnowski, Perspectives on cognitive neuroscience. Science 242(4879), 741–745 (1988)

    Article  Google Scholar 

  14. B.L.M. Happel, J.M.J. Murre, Design and evolution of modular neural network architectures. Neural Netw. 7(6–7), 985–1004 (1994)

    Article  Google Scholar 

  15. J. McCarthy, M.L. Minsky, N. Rochester, C.E. Shannon, A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Magazine 27(4), 12 (2006)

    Google Scholar 

  16. J. Burrell, How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data Soc. 3(1), 2053951715622512 (2016)

    Article  Google Scholar 

  17. B. Biswal, F. Zerrin Yetkin, V.M. Haughton, J.S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (1995)

    Article  Google Scholar 

  18. T. Suzuki, M. Sugiyama, Least-squares independent component analysis. Neural Comput. 23(1), 284–301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Friston, Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage 58(2), 303 (2011)

    Article  Google Scholar 

  20. F. Tong, M.S. Pratte, Decoding patterns of human brain activity. Annu. Rev. Psychol. 63, 483–509 (2012)

    Article  Google Scholar 

  21. U. Güçlü, M.A.J. van Gerven, Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35(27), 10005–10014 (2015)

    Article  Google Scholar 

  22. M. Eickenberg, A. Gramfort, G. Varoquaux, B. Thirion, Seeing it all: Convolutional network layers map the function of the human visual system. NeuroImage 152, 184–194 (2017)

    Article  Google Scholar 

  23. K. A. Norman, S. M. Polyn, G. J. Detre, and J. V Haxby, “Beyond mind-reading: Multi-voxel pattern analysis of fMRI data,” Trends Cogn. Sci., Vol. 10, No. 9, pp. 424–430, 2006.

    Google Scholar 

  24. L.F. Abbott, Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50(5–6), 303–304 (1999)

    Article  Google Scholar 

  25. M. Bezzi, T. Nieus, O.J.-M. Coenen, E. D’Angelo, An integrate-and-fire model of a cerebellar granule cell. Neurocomputing 58, 593–598 (2004)

    Article  Google Scholar 

  26. A. Saparov, M.A. Schwemmer, Effects of passive dendritic tree properties on the firing dynamics of a leaky-integrate-and-fire neuron. Math. Biosci. 269, 61–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Kostal, Approximate information capacity of the perfect integrate-and-fire neuron using the temporal code. Brain Res. 1434, 136–141 (2012)

    Article  Google Scholar 

  28. D. Brown, J. Feng, Is there a problem matching real and model CV (ISI)? Neurocomputing 26, 87–91 (1999)

    Article  Google Scholar 

  29. R.A. Vazquez, A. Cachón, Integrate and fire neurons and their application in pattern recognition, in 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control, (2010), pp. 424–428

    Chapter  Google Scholar 

  30. A. Cachón, R.A. Vázquez, Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems. Neurocomputing 148, 187–197 (2015)

    Article  Google Scholar 

  31. D. Mishra, A. Yadav, S. Ray, P.K. Kalra, Levenberg-Marquardt learning algorithm for integrate-and-fire neuron model. Neural Inf. Process. Lett. Rev. 9(2), 41–51 (2005)

    Google Scholar 

  32. L.F. Abbott, T.B. Kepler, Model neurons: From hodgkin-huxley to hopfield, in Statistical mechanics of neural networks, (Springer, Cham, 1990), pp. 5–18

    Chapter  Google Scholar 

  33. P.R. Shorten, D.J.N. Wall, A Hodgkin–Huxley model exhibiting bursting oscillations. Bull. Math. Biol. 62(4), 695–715 (2000)

    Article  MATH  Google Scholar 

  34. R.O. Doruk, Control of repetitive firing in Hodgkin–Huxley nerve fibers using electric fields. Chaos Solitons Fractals 52, 66–72 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Q. Lin et al., The dynamical analysis of modified two-compartment neuron model and FPGA implementation. Phys A Stat. Mech. Appl. 484, 199–214 (2017)

    Article  MathSciNet  Google Scholar 

  36. G. Yi, J. Wang, X. Wei, B. Deng, Dynamics of spike threshold in a two-compartment neuron with passive dendrite. Commun. Nonlinear Sci. Numer. Simul. 40, 100–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Soleimani, M. Bavandpour, A. Ahmadi, D. Abbott, Digital implementation of a biological astrocyte model and its application. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 127–139 (2015)

    Article  MathSciNet  Google Scholar 

  38. G. Martin, J. Harkin, L.J. Mcdaid, J. John, F. Morgan, Astrocyte to Spiking Neuron Communication Using Networks-on-Chip Ring Topology (2016)

    Book  Google Scholar 

  39. N. Mir, A. Sarirete, J. Hejres, M. Al Omairi, Use of EEG technology with based brain-computer interface to address amyotrophic lateral sclerosis—ALS, in The International Research & Innovation Forum, (2019), pp. 433–439

    Google Scholar 

  40. A. Subasi, Electroencephalogram-controlled assistive devices, in Bioelectronics and medical devices, (Elsevier, 2019), pp. 261–284

    Chapter  Google Scholar 

  41. A. Merante, Y. Zhang, S. Kumar, C.S. Nam, Brain–Computer interfaces for spinal cord injury rehabilitation, in Neuroergonomics, (Springer, Cham, 2020), pp. 315–328

    Chapter  Google Scholar 

  42. A. Ahmadi, S. Davoudi, M. Behroozi, M.R. Daliri, Decoding covert visual attention based on phase transfer entropy. Physiol. Behav., 112932 (2020)

    Google Scholar 

  43. G. Pezzulo, M. Levin, Re-membering the body: Applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integr. Biol. 7(12), 1487–1517 (2015)

    Article  Google Scholar 

  44. P. Boord, A. Barriskill, A. Craig, H. Nguyen, Brain–computer Interface—FES integration: Towards a hands-free Neuroprosthesis command system. Neuromodulation Technol Neural Interface 7(4), 267–276 (2004)

    Article  Google Scholar 

  45. A. Singhal, Sarishma, R. Tomar, Intelligent accident management system using IoT and cloud computing, in Proceedings on 2016 2nd International Conference on Next Generation Computing Technologies, NGCT 2016, (2017), pp. 89–92

    Google Scholar 

  46. A. Khanna, Sarishma, Mobile Cloud Computing: Principles and Paradigms.

    Google Scholar 

  47. P.K. Yong, E.T.W. Ho, Streaming brain and physiological signal acquisition system for IoT neuroscience application, in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), (2016), pp. 752–757

    Chapter  Google Scholar 

  48. A. Knoll, M.-O. Gewaltig, Neurorobotics: A Strategic Pillar of the Human Brain Project (Science Robotics, 2016)

    Google Scholar 

  49. K.E. Friedl, A.R. Voelker, A. Peer, C. Eliasmith, Human-inspired neurorobotic system for classifying surface textures by touch. IEEE Robot. Autom. Lett. 1(1), 516–523 (2016)

    Article  Google Scholar 

  50. G. Chen et al., Toward brain-inspired learning with the neuromorphic snake-like robot and the neurorobotic platform. IEEE Trans. Cog. Dev. Syst. 11(1), 1–12 (2017)

    Google Scholar 

  51. A. De Mauro et al., Virtual reality system in conjunction with neurorobotics and neuroprosthetics for rehabilitation of motor disorders, in MMVR, (2011), pp. 163–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarishma, D., Sangwan, S., Tomar, R., Srivastava, R. (2022). A Review on Cognitive Computational Neuroscience: Overview, Models, and Applications. In: Tomar, R., Hina, M.D., Zitouni, R., Ramdane-Cherif, A. (eds) Innovative Trends in Computational Intelligence. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-78284-9_10

Download citation

Publish with us

Policies and ethics