Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Trajectory Model for Desktop-Scale Hand Redirection in Virtual Reality

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12936))

Included in the following conference series:

Abstract

In Virtual Reality, visuo-haptic illusions such as hand redirection introduce a discrepancy between the user’s hand and its virtual avatar. This visual shift can be used, for instance, to provide multiple virtual haptic objects through a single physical proxy object. This low-cost approach improves the sense of presence, however, it is unclear how these illusions impact the hand trajectory and if there is a relationship between trajectory and the detection of illusion. In this paper, we present an empirical model predicting the hand trajectory as a function of the redirection. It relies on a cubic Bézier curve with 4 control points. We conduct a two alternative forced choice (2AFC) experiment to calibrate and validate our model. Results show that (1) our model predicts well the hand trajectory of each individual using a single parameter; (2) the hand trajectory better explains the detection of the illusion than the amplitude of the redirection alone; (3) a user specific calibration allows to predict per-user redirected trajectories and detection probabilities. Our findings provide a better understanding of visuo-haptic illusions and how they impact the user’s movements. As such they may provide foundations to design novel interaction techniques, e.g. interacting in a scene with multiple physical obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abtahi, P., Follmer, S.: Visuo-haptic illusions for improving the perceived performance of shape displays. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 150:1–150:13. ACM, New York (2018). https://doi.org/10.1145/3173574.3173724

  2. Azmandian, M., Hancock, M., Benko, H., Ofek, E., Wilson, A.D.: Haptic retargeting: dynamic repurposing of passive haptics for enhanced virtual reality experiences. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, pp. 1968–1979. ACM, New York (2016). https://doi.org/10.1145/2858036.2858226

  3. Ban, Y., Kajinami, T., Narumi, T., Tanikawa, T., Hirose, M.: Modifying an identified curved surface shape using pseudo-haptic effect. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 211–216, March 2012. https://doi.org/10.1109/HAPTIC.2012.6183793

  4. van Beers, R.J., Wolpert, D.M., Haggard, P.: When feeling is more important than seeing in sensorimotor adaptation. Curr. Biol. 12(10), 834–837 (2002). https://doi.org/10.1016/S0960-9822(02)00836-9

    Article  Google Scholar 

  5. Block, H.J., Sexton, B.M.: Visuo-proprioceptive control of the hand in older adults. bioRxiv (2020). https://doi.org/10.1101/2020.01.18.911354

  6. Bouzbib, E., Bailly, G., Haliyo, S., Frey, P.: CoVR: a large-scale force-feedback robotic interface for non-deterministic scenarios in VR. CoRR abs/2009.07149 (2020). https://arxiv.org/abs/2009.07149

  7. Burns, E., Razzaque, S., Panter, A., Whitton, M., McCallus, M., Brooks, F.: The hand is slower than the eye: a quantitative exploration of visual dominance over proprioception. In: 2005 IEEE Proceedings of Virtual Reality, VR 2005, pp. 3–10 (2005). https://doi.org/10.1109/VR.2005.1492747

  8. Burns, E., Razzaque, S., Panter, A.T., Whitton, M.C., McCallus, M.R., Brooks, F.P.: The hand is more easily fooled than the eye: users are more sensitive to visual interpenetration than to visual-proprioceptive discrepancy. Presence: Teleoper. Virtual Environ. 15(1), 1–15 (2006). https://doi.org/10.1162/pres.2006.15.1.1

    Article  Google Scholar 

  9. Cheng, L.P., Ofek, E., Holz, C., Benko, H., Wilson, A.D.: Sparse haptic proxy: touch feedback in virtual environments using a general passive prop. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 3718–3728. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3025453.3025753

  10. van Dam, L.C.J., Ernst, M.O.: Knowing each random error of our ways, but hardly correcting for it: an instance of optimal performance. PLOS One 8(10), 1–9 (2013). https://doi.org/10.1371/journal.pone.0078757

    Article  Google Scholar 

  11. Dominjon, L., Lecuyer, A., Burkhardt, J., Richard, P., Richir, S.: Influence of control/display ratio on the perception of mass of manipulated objects in virtual environments. In: 2005 IEEE Proceedings of Virtual Reality, VR 2005, pp. 19–25, March 2005. https://doi.org/10.1109/VR.2005.1492749

  12. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002). https://doi.org/10.1038/415429a

    Article  Google Scholar 

  13. Ernst, M.O., Bülthoff, H.H.: Merging the senses into a robust percept. Trends Cogn. Sci. 8(4), 162–169 (2004). https://doi.org/10.1016/j.tics.2004.02.002

    Article  Google Scholar 

  14. Esmaeili, S., Benda, B., Ragan, E.D.: Detection of scaled hand interactions in virtual reality: the effects of motion direction and task complexity. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 453–462 (2020). https://doi.org/10.1109/VR46266.2020.00066

  15. Faraway, J.J., Reed, M.P., Wang, J.: Modelling three-dimensional trajectories by using bézier curves with application to hand motion. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 56(5), 571–585 (2007). https://doi.org/10.1111/j.1467-9876.2007.00592.x. https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9876.2007.00592.x

  16. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985). https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985

    Article  Google Scholar 

  17. Gibson, J.J.: Adaptation, after-effect and contrast in the perception of curved lines. J. Exp. Psychol. 16(1), 1 (1933)

    Article  Google Scholar 

  18. Gonzalez, E.J., Abtahi, P., Follmer, S.: Evaluating the minimum jerk motion model for redirected reach in virtual reality. In: The Adjunct Publication of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST 2019, pp. 4–6. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3332167.3357096

  19. Gonzalez, E.J., Abtahi, P., Follmer, S.: REACH+: extending the reachability of encountered-type haptics devices through dynamic redirection in VR, pp. 236–248. Association for Computing Machinery, New York (2020)

    Google Scholar 

  20. Gonzalez, E.J., Follmer, S.: Investigating the detection of bimanual haptic retargeting in virtual reality. In: 25th ACM Symposium on Virtual Reality Software and Technology, pp. 1–5 (2019)

    Google Scholar 

  21. Gonzalez-Franco, M., Lanier, J.: Model of illusions and virtual reality. Front. Psychol. 8, 1125 (2017). https://doi.org/10.3389/fpsyg.2017.01125. https://www.frontiersin.org/article/10.3389/fpsyg.2017.01125

  22. Grechkin, T., Thomas, J., Azmandian, M., Bolas, M., Suma, E.: Revisiting detection thresholds for redirected walking: combining translation and curvature gains. In: Proceedings of the ACM Symposium on Applied Perception, SAP 2016, pp. 113–120. ACM, New York (2016). https://doi.org/10.1145/2931002.2931018

  23. Han, D.T., Suhail, M., Ragan, E.D.: Evaluating remapped physical reach for hand interactions with passive haptics in virtual reality. IEEE Trans. Vis. Comput. Graph. 24(4), 1467–1476 (2018). https://doi.org/10.1109/TVCG.2018.2794659

    Article  Google Scholar 

  24. Jauregui, D.A.G., Argelaguet, F., Olivier, A., Marchal, M., Multon, F., Lecuyer, A.: Toward “pseudo-haptic avatars’’: modifying the visual animation of self-avatar can simulate the perception of weight lifting. IEEE Trans. Vis. Comput. Graph. 20(4), 654–661 (2014). https://doi.org/10.1109/TVCG.2014.45

    Article  Google Scholar 

  25. Kasahara, S., et al.: Malleable embodiment: changing sense of embodiment by spatial-temporal deformation of virtual human body. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 6438–6448. ACM, New York (2017). https://doi.org/10.1145/3025453.3025962

  26. Kohli, L.: Redirected touching: warping space to remap passive haptics. In: 2010 IEEE Symposium on 3D User Interfaces (3DUI), pp. 129–130, March 2010. https://doi.org/10.1109/3DUI.2010.5444703

  27. Lee, Y., Jang, I., Lee, D.: Enlarging just noticeable differences of visual-proprioceptive conflict in VR using haptic feedback. In: 2015 IEEE World Haptics Conference (WHC), pp. 19–24, June 2015. https://doi.org/10.1109/WHC.2015.7177685

  28. MacNeilage, P.R., Banks, M.S., Berger, D.R., Bülthoff, H.H.: A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp. Brain Res. 179(2), 263–290 (2007)

    Article  Google Scholar 

  29. Raftery, A.E.: Bayesian model selection in social research. Sociol. Methodol. 111–163 (1995)

    Google Scholar 

  30. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Eurographics 2001 - Short Presentations. Eurographics Association (2001). https://doi.org/10.2312/egs.20011036

  31. Rietzler, M., Geiselhart, F., Gugenheimer, J., Rukzio, E.: Breaking the tracking: enabling weight perception using perceivable tracking offsets. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 128:1–128:12. ACM, New York (2018). https://doi.org/10.1145/3173574.3173702

  32. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978). https://doi.org/10.1109/TASSP.1978.1163055

    Article  MATH  Google Scholar 

  33. Samad, M., Gatti, E., Hermes, A., Benko, H., Parise, C.: Pseudo-haptic weight: changing the perceived weight of virtual objects by manipulating control-display ratio. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, pp. 320:1–320:13. ACM, New York (2019). https://doi.org/10.1145/3290605.3300550

  34. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Visual Comput. Graph. 16(1), 17–27 (2010). https://doi.org/10.1109/TVCG.2009.62

    Article  Google Scholar 

  35. Velichko, V., Zagoruyko, N.: Automatic recognition of 200 words. Int. J. Man Mach. Stud. 2(3), 223–234 (1970). https://doi.org/10.1016/S0020-7373(70)80008-6

    Article  Google Scholar 

  36. Wolpert, D.M., Ghahramani, Z., Jordan, M.I.: Perceptual distortion contributes to the curvature of human reaching movements. Exp. Brain Res. 98(1), 153–156 (1994)

    Article  Google Scholar 

  37. Zenner, A., Krüger, A.: Estimating detection thresholds for desktop-scale hand redirection in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 47–55 (2019). https://doi.org/10.1109/VR.2019.8798143

Download references

Acknowledgments

We would like to thank Benoit Geslain and Hugues Lebrun for their valuable feedback, as well as the participants of experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavien Lebrun , Sinan Haliyo or Gilles Bailly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lebrun, F., Haliyo, S., Bailly, G. (2021). A Trajectory Model for Desktop-Scale Hand Redirection in Virtual Reality. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12936. Springer, Cham. https://doi.org/10.1007/978-3-030-85607-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85607-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85606-9

  • Online ISBN: 978-3-030-85607-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics