Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Learning-Based Point Cloud Analysis

  • Chapter
  • First Online:
3D Point Cloud Analysis
  • 1431 Accesses

Abstract

Deep learning has achieved impressive performance improvements over traditional methods for almost all vision tasks. Point cloud processing is no exception. Since 2017, researchers have become inclined to train end-to-end networks for tasks like point cloud classification, semantic segmentation, and object detection. More recently, other tasks like registration and odometry have also been solved using Deep learning . These newer data-driven methods provide some benefits over traditional methods that rely on handcrafted features. Nevertheless, many traditional methods are still in practice due to their simplicity and speed, and they form the basis of newer methods. In this chapter, we discuss some Deep learning -based methods for point cloud processing. This subset of methods has had a huge impact in this field and is representative of current research progress in computer vision. The Deep learning methods for point cloud classification, semantic segmentation, and registration tasks are discussed. We explore several papers, with a focus on the proposed methods and associated details, while the experimental details are limited to performance evaluations on benchmark datasets. Other analyses such as ablation studies and miscellaneous details from the papers are omitted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abid, A., Balin, M.F., Zou, J.: Concrete autoencoders for differentiable feature selection and reconstruction (2019). arXiv preprint arXiv:1901.09346

    Google Scholar 

  2. Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: Pointnetlk: Robust & efficient point cloud registration using pointnet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2019)

    Google Scholar 

  3. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  4. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: Semantickitti: A dataset for semantic scene understanding of LiDAR sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  5. Choy, C., Dong, W., Koltun, V.: Deep global registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2514–2523 (2020)

    Google Scholar 

  6. Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966 (2019)

    Google Scholar 

  7. Deng, H., Birdal, T., Ilic, S.: PPFNet: Global context aware local features for robust 3d point matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018)

    Google Scholar 

  8. Dovrat, O., Lang, I., Avidan, S.: Learning to sample. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2760–2769 (2019)

    Google Scholar 

  9. Groh, F., Wieschollek, P., Lensch, H.: Flex-convolution (million-scale point-cloud learning beyond grid-worlds) (2018). arXiv preprint arXiv:1803.07289

    Google Scholar 

  10. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.: Semantic3d. net: a new large-scale point cloud classification benchmark (2017). arXiv preprint arXiv:1704.03847

    Google Scholar 

  11. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11108–11117 (2020)

    Google Scholar 

  12. Jiang, M., Wu, Y., Zhao, T., Zhao, Z., Lu, C.: PointSIFT: A sift-like network module for 3d point cloud semantic segmentation (2018). arXiv preprint arXiv:1807.00652

    Google Scholar 

  13. Johnson, A.E.: Spin-images: a representation for 3-d surface matching (1997)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  15. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. Adv. Neural Inform. Process. Syst. 31, 820–830 (2018)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. Vancouver, British Columbia (1981)

    Google Scholar 

  18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet+ +: Deep hierarchical feature learning on point sets in a metric space (2017). arXiv preprint arXiv:1706.02413

    Google Scholar 

  20. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE, Piscataway (2009)

    Google Scholar 

  21. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)

    Google Scholar 

  22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need (2017). arXiv preprint arXiv:1706.03762

    Google Scholar 

  23. Wang, Y., Solomon, J.M.: Deep closest point: Learning representations for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3523–3532 (2019)

    Google Scholar 

  24. Wang, Y., Solomon, J.M.: PRNet: Self-supervised learning for partial-to-partial registration (2019). arXiv preprint arXiv:1910.12240

    Google Scholar 

  25. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)

    Article  Google Scholar 

  26. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d ShapeNets: A deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  27. Xiao, J., Owens, A., Torralba, A.: Sun3d: A Database of Big Spaces Reconstructed Using SFM and Object Labels. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1625–1632 (2013)

    Google Scholar 

  28. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: Neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  29. Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., Tian, Q.: Modeling point clouds with self-attention and gumbel subset sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3323–3332 (2019)

    Google Scholar 

  30. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A., Guibas, L.: A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph. 35(6), 1–12 (2016)

    Article  Google Scholar 

  31. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3dmatch: Learning local geometric descriptors from RGB-D reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1802–1811 (2017)

    Google Scholar 

  32. Zhao, H., Jiang, L., Jia, J., Torr, P., Koltun, V.: Point transformer (2020). arXiv preprint arXiv:2012.09164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, S., Zhang, M., Kadam, P., Kuo, CC.J. (2021). Deep Learning-Based Point Cloud Analysis. In: 3D Point Cloud Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-89180-0_3

Download citation

Publish with us

Policies and ethics