Abstract
Convolutional neural networks (CNN) have made significant advances in detecting roads from satellite images. However, existing CNN approaches are generally repurposed semantic segmentation architectures and suffer from the poor delineation of long and curved regions. Lack of overall road topology and structure information further deteriorates their performance on challenging remote sensing images. This paper presents a novel multi-task graph neural network (GNN) which simultaneously detects both road regions and road borders; the inter-play between these two tasks unlocks superior performance from two perspectives: (1) the hierarchically detected road borders enable the network to capture and encode holistic road structure to enhance road connectivity (2) identifying the intrinsic correlation of semantic landcover regions mitigates the difficulty in recognizing roads cluttered by regions with similar appearance. Experiments on challenging dataset demonstrate that the proposed architecture can improve the road border delineation and road extraction accuracy compared with the existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alshehhi, R., Marpu, P.R.: Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images. ISPRS J. Photogram. Remote Sens. 126, 245–260 (2017)
Chen, L., Zhu, Q., Xie, X., Hu, H., Zeng, H.: Road extraction from VHR remote-sensing imagery via object segmentation constrained by Gabor features. ISPRS Int. J. Geo-Information 7(9), 362 (2018)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Das, S., Mirnalinee, T.T., Varghese, K.: Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images. IEEE TGRS 49(10), 3906–3931 (2011). https://doi.org/10.1109/TGRS.2011.2136381
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004). https://doi.org/10.1023/B:VISI.0000022288.19776.77
Gao, L., Song, W., Dai, J., Chen, Y.: Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network. Remote Sens. 11(5), 552 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Jia, J., et al.: Tradeoffs in the spatial and spectral resolution of airborne hyperspectral imaging systems crop identification case study. IEEE TGRS 1–18 (2021)
Jia, J., et al.: Road extraction technology based on multi-source remote sensing data: Review and prospects. Opt. Precis. Eng. 29
Kestur, R., Farooq, S., Abdal, R., Mehraj, E., Narasipura, O.S., Mudigere, M.: UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle. J. Appl. Remote Sens. 12(1), 016020 (2018)
Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI (2018)
Liu, Y., Yao, J., Lu, X., Xia, M., Wang, X., Liu, Y.: RoadNet: learning to comprehensively analyze road networks in complex urban scenes from high-resolution remotely sensed images. IEEE TGRS 57(4), 2043–2056 (2018)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Lu, X., et al.: Multi-scale and multi-task deep learning framework for automatic road extraction. IEEE TGRS 57(11), 9362–9377 (2019)
Mnih, V.: Machine learning for aerial image labeling. University of Toronto, Canada (2013)
Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 210–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_16
Oner, D., Koziński, M., Citraro, L., Dadap, N.C., Konings, A.G., Fua, P.: Promoting connectivity of network-like structures by enforcing region separation. arXiv preprint arXiv:2009.07011 (2020)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR, pp. 724–732 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saito, S., Yamashita, T., Aoki, Y.: Multiple object extraction from aerial imagery with convolutional neural networks. Electron. Imaging 2016(10), 1–9 (2016)
Shao, Z., Zhou, Z., Huang, X., Zhang, Y.: MRENet: simultaneous extraction of road surface and road centerline in complex urban scenes from very high-resolution images. Remote Sens. 13(2), 239 (2021)
Song, M., Civco, D.: Road extraction using SVM and image segmentation. Photogram. Eng. Remote Sens. 70(12), 1365–1371 (2004)
Wang, H.: Spectral graph reasoning network for hyperspectral image classification. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020, Part I. LNCS, vol. 12396, pp. 711–723. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61609-0_56
Wang, H., Raiko, T., Lensu, L., Wang, T., Karhunen, J.: Semi-supervised domain adaptation for weakly labeled semantic video object segmentation. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016, Part I. LNCS, vol. 10111, pp. 163–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_11
Wang, H., Wang, T.: Boosting objectness: semi-supervised learning for object detection and segmentation in multi-view images. In: ICASSP, pp. 1796–1800 (2016)
Wang, H., Wang, T.: Primary object discovery and segmentation in videos via graph-based transductive inference. Comput. Vis. Image Underst. 143, 159–172 (2016)
Wang, H., Wang, T., Chen, K., Kämäräinen, J.K.: Cross-granularity graph inference for semantic video object segmentation. In: IJCAI, pp. 4544–4550 (2017)
Wang, S., Yang, H., Wu, Q., Zheng, Z., Wu, Y., Li, J.: An improved method for road extraction from high-resolution remote-sensing images that enhances boundary information. Sensors 20(7), 2064 (2020)
Wang, T., Wang, G., Tan, K.E., Tan, D., et al.: Hyperspectral image classification via pyramid graph reasoning. In: Bebis, G. (ed.) ISVC 2020, Part I. LNCS, vol. 12509, pp. 707–718. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64556-4_55
Wang, T., Wang, H.: Graph transduction learning of object proposals for video object segmentation. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014, Part IV. LNCS, vol. 9006, pp. 553–568. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_36
Waswani, A., et al.: Attention is all you need. In: NIPS (2017)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV,p. 1395–1403 (2015)
Xu, Y., Xie, Z., Feng, Y., Chen, Z.: Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sens. 10(9), 1461 (2018)
Yang, X., Li, X., Ye, Y., Lau, R.Y., Zhang, X., Huang, X.: Road detection and centerline extraction via deep recurrent convolutional neural network u-net. IEEE TGRS 57(9), 7209–7220 (2019)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)
Zhou, L., Zhang, C., Wu, M.: D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: CVPR Workshops, pp. 182–186 (2018)
Zhu, L., Wang, T., Aksu, E., Kamarainen, J.: Portrait instance segmentation for mobile devices. In: ICME, pp. 1630–1635 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, T., Wang, G., Tan, K.E. (2021). Holistically-Nested Structure-Aware Graph Neural Network for Road Extraction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-90439-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90438-8
Online ISBN: 978-3-030-90439-5
eBook Packages: Computer ScienceComputer Science (R0)