Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Collaborative QoS Prediction via Context-Aware Factorization Machine

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

  • 1810 Accesses

Abstract

With the prevalence of Web/Cloud/IoT services on the Internet, to select service with high quality is of paramount importance for building reliable distributed applications. However, the accurate values of the quality of services (QoS) are usually uneasy to obtain for they are typically personalized and highly depend on the contexts of users and services such as locations, bandwidths and other network conditions. Therefore, personalized and context-aware QoS prediction methods are desirable. By exploiting the QoS records generated by a set of users on a set of services, this paper proposes a collaborative QoS prediction method based on Context-Aware Factorization Machines named CAFM, which integrates the context information of services and users with classic factorization machines. Comprehensive experiments conducted on a real-world dataset show that the proposed method significantly outperforms existing methods in prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, X., Liang, W., Xu, J., Wang, C., Li, K. C., Qiu, M.: An efficient service recommendation algorithm for cyber-physical-social systems. In: IEEE Transactions on Network Science and Engineering (2021). https://doi.org/10.1109/TNSE.2021.3092204

  2. Liang, W., Ning, Z., Xie, S., Hu, Y., Lu, S., Zhang, D.: Secure fusion approach for the internet of things in smart autonomous multi-robot systems. Inform. Sci. 1–20 (2021). https://doi.org/10.1016/j.ins.2021.08.035

  3. Tang, M., Xia, Y., Tang, B., Zhou, Y., Cao, B., Hu, R.: Mining collaboration patterns between APIs for mashup creation in web of things. In: IEEE Access, vol. 7, pp. 14206–14215 (2019)

    Google Scholar 

  4. Gao, H., Qin, X., Barroso, R.J.D., Hussain, W., Xu, Y., Yin, Y.: Collaborative learning-based industrial IoT API recommendation for software-defined devices: the implicit knowledge discovery perspective. In: IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1–11 (2020)

    Google Scholar 

  5. Tang, M., Zheng, Z., Kang, G., Liu, J., Yang, Y., Zhang, T.: Collaborative web service quality prediction via exploiting matrix factorization and network map. IEEE Trans. Netw. Serv. Manage. 13(1), 126–137 (2016)

    Article  Google Scholar 

  6. Liu, J., Tang, M., Zheng, M., Liu, X., Lyu, S.: Location-aware and personalized collaborative filtering for web service recommendation. IEEE Trans. Serv. Comput. 9(5), 686–699 (2016)

    Article  Google Scholar 

  7. Zheng, Z., Li, X., Tang, M., Xie, F., Lyu, M.R.: Web service QoS prediction via collaborative filtering: a survey. IEEE Trans. Serv. Comput. (2020)

    Google Scholar 

  8. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, IEEE. pp. 995–1000 (2010)

    Google Scholar 

  9. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with factorization machines, In: Proc. 34th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Beijing, China, Jul. 2011, pp. 635–644 (2011)

    Google Scholar 

  10. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans. Serv. Comput. 7(1), 32–39 (2014)

    Article  Google Scholar 

  11. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, M.: Personalized QoS prediction for web services via collaborative filtering. In: The 14th IEEE International Conference on Web Services (ICWS 2007), pp.439–446 (2007)

    Google Scholar 

  12. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: The 10th International Conference on World Wide Web (WWW 2001), pp.285–295 (2001)

    Google Scholar 

  13. Zheng, Z., Ma, H., Lyu, M.R., King., I.: WSRec: A collaborative filtering based web service recommender system. In: IEEE International Conference on Web Services, pp. 437–444 (2009)

    Google Scholar 

  14. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: The Twenty-First Annual Conference on Neural Information Processing Systems (NIPS 2007), pp.1257–1264 (2007)

    Google Scholar 

  15. Yang, Y., Zheng, Z., Niu, X., Tang, M., Lu, Y., Liao, X.: A location-based factorization machine model for web service QoS prediction. IEEE Trans. Serv. Comput. 14(5), 1264–1277 (2021)

    Article  Google Scholar 

  16. Tang, M., Jiang, Y., Liu, J., Liu, M.: Location-aware collaborative filtering for QoS-based service recommendation. In: 2012 IEEE 19th International Conference on Web Services (ICWS 2012), pp. 202–209 (2012)

    Google Scholar 

  17. Tang, M., Zhang, T., Liu, J., Chen, J.: Cloud service QoS prediction via exploiting collaborative filtering and location-based data smoothing. Concurr. Comput. Pract. Exp. 27(18), 5826–5839 (2015)

    Article  Google Scholar 

  18. Ma, Y., Wang, S., Hung, P.C.K., Hsu, C., Sun, Q., Yang, F.: A highly accurate prediction algorithm for unknown web service QoS values. IEEE Trans. Serv. Comput. 9(4), 511–523 (2016)

    Article  Google Scholar 

  19. Zhang, Y., Zheng, Z., Lyu, M.R.: Exploring latent features for memory-based QoS prediction in cloud computing. In: 2009 IEEE International Conference on Web Services, pp. 437–444 (2009)

    Google Scholar 

  20. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service QoS prediction via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3), 289–299 (2013)

    Article  Google Scholar 

  21. Chen, Z., Sun, Y., You, D., Li, F., Shen, L.: An accurate and efficient web service QoS prediction model with wide-range awareness. Future Gener. Comput. Syst. 109, 275–292 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China under grant no. 61976061 and the Opening Project of Guangdong Key Laboratory of Big Data Analysis and Processing (202003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingdong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, W., Tang, M., Liang, W. (2022). Collaborative QoS Prediction via Context-Aware Factorization Machine. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics