Abstract
Interactive storytelling is a form of digital entertainment that has gained attention with the development of creative computational methodologies. However, one of the main problems this field is facing is the poor control that the content creator (e.g. film director or game designer) has over the experience of the user (e.g. viewer or player) once the story starts. Hence, we leverage artificial intelligence to increase the creative control of the content creator by designing a system that guides the user’s emotions towards a particular state as the story unfolds. Specifically, we have developed an EEG-based emotion recognition system trained on EEG recordings acquired from 5 participants watching a selection of 384 videos. The system is able to operate a binary classification on both valence and arousal with an accuracy of 62% and 57%, respectively. A short film was then created, where each scene automatically adapts to the user’s emotion, based on a set of predefined interactions established by the content creator (i.e. the actual film director). The analysis shows that the system not only improves the engagement of the user, but also induces an emotion closer to the one intended and specified ahead of time by the content creator for the story. Our results indicate that there is a practical application of emotion-based studies for future content creators to better control an intended emotional response delivered and received by the audience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
A teaser for this short film is available at https://sendvid.com/nlxw45pi.
References
Al Machot, F., Elmachot, A., Ali, M., Al Machot, E., Kyamakya, K.: A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors. Sensors 19(7) (2019). https://doi.org/10.3390/s19071659, https://www.mdpi.com/1424-8220/19/7/1659
Alserri, S.A., Zin, N.A.M., Wook, T.S.M.T.: Instrument validation for evaluating serious game engagement model. In: 2019 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 170–175. IEEE (2019)
Barrett, L.F., Adolphs, R., Marsella, S., Martinez, A.M., Pollak, S.D.: Emotional expressions reconsidered: challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 20(1), 1–68 (2019)
Baveye, Y., Dellandréa, E., Chamaret, C., Chen, L.: LIRIS-ACCEDE: a video database for affective content analysis. IEEE Trans. Affect. Comput. 6, 43–55 (2015). https://doi.org/10.1109/TAFFC.2015.2396531
Bellantoni, P.: If It’s Purple, Someone’s Gonna Die: The Power of Color in Visual Storytelling. Taylor & Francis (2012). https://books.google.co.jp/books?id=E57cAwAAQBAJ
Böck, R., et al.: Intraindividual and interindividual multimodal emotion analyses in human-machine-interaction. In: 2012 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, pp. 59–64. IEEE (2012)
Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Therapy Exp. Psychiatry 25(1), 49–59 (1994). https://doi.org/10.1016/0005-7916(94)90063-9, https://www.sciencedirect.com/science/article/pii/0005791694900639
Bradley, M.M., Miccoli, L., Escrig, M.A., Lang, P.J.: The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45(4), 602–607 (2008)
Carlton, J., Brown, A., Jay, C., Keane, J.: Inferring user engagement from interaction data. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–6 (2019)
Caruso, E.M., Burns, Z.C., Converse, B.A.: Slow motion increases perceived intent. Proc. Natl. Acad. Sci. 113(33), 9250–9255 (2016). https://doi.org/10.1073/pnas.1603865113, https://www.pnas.org/content/113/33/9250
Ciancone Chama, A.G., Monaro, M., Piccoli, E., Gamberini, L., Spagnolli, A.: Engaging the audience with biased news: an exploratory study on prejudice and engagement. In: Oinas-Kukkonen, H., Win, K.T., Karapanos, E., Karppinen, P., Kyza, E. (eds.) PERSUASIVE 2019. LNCS, vol. 11433, pp. 350–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17287-9_28
Damiano, R., Lombardo, V., Monticone, G., Pizzo, A.: All about face. An experiment in face emotion recognition in interactive dramatic performance. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 1–7 (2019). https://doi.org/10.1109/ACIIW.2019.8925032
De Andrés, I., Garzón, M., Reinoso-Suárez, F.: Functional anatomy of non-REM sleep. Front. Neurol. 1–14 (2011). https://doi.org/10.3389/fneur.2011.00070
Deldin, P.J., Keller, J., Gergen, J.A., Miller, G.A.: Cognitive bias and emotion in neuropsychological models of depression. Cogn. Emot. 15(6), 787–802 (2001)
Frey, J., Ostrin, G., Grabli, M., Cauchard, J.R.: Physiologically driven storytelling: concept and software tool. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI 2020, pp. 1–13. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3313831.3376643, https://doi.org/10.1145/3313831.3376643
Hauge, M.: Writing Screenplays That Sell. Bloomsbury Publishing (2011). https://books.google.co.jp/books?id=6I9qDwAAQBAJ
Iwamoto, S.: Epic and interactive music in ‘final fantasy xv’ (2017). https://www.gdcvault.com/play/1023971/Epic-AND-Interactive-Music-in
Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15
Lang, P.J.: The emotion probe. Am. Psychol. Assoc. 50, 372–385 (1995). https://doi.org/10.1037/0003-066X.50.5.372
Laurans, G., Desmet, P.M., Hekkert, P.P.: Assessing emotion in interaction: some problems and a new approach. In: Proceedings of the 4th International Conference on Designing Pleasurable Products and Interfaces, DPPI 2009, Compiegne, October 2009. Universite de Technologie de Compiegne (2009)
Levenson, R.W., Ekman, P., Friesen, W.V.: Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology 27(4), 363–384 (1990)
Liu, J., et al.: EEG-based emotion classification using a deep neural network and sparse autoencoder. Front. Syst. Neurosci. 14, 43 (2020). https://doi.org/10.3389/fnsys.2020.00043, https://www.frontiersin.org/article/10.3389/fnsys.2020.00043
Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based human emotion recognition and visualization. In: 2010 International Conference on Cyberworlds, pp. 262–269. IEEE (2010)
Marlowe, D., Crowne, D.P.: Social desirability and response to perceived situational demands. J. Consult. Psychol. 25, 109–15 (1961)
Nardelli, M., Valenza, G., Greco, A., Lanata, A., Scilingo, E.P.: Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans. Affect. Comput. 6(4), 385–394 (2015). https://doi.org/10.1109/TAFFC.2015.2432810
O’Brien, H.: Translating theory into methodological practice. In: O’Brien, H., Cairns, P. (eds.) Why Engagement Matters, pp. 27–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27446-1_2
O’Brien, H.L., Cairns, P., Hall, M.: A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. Int. J. Hum.-Comput. Stud. 112, 28–39 (2018). https://doi.org/10.1016/j.ijhcs.2018.01.004, https://www.sciencedirect.com/science/article/pii/S1071581918300041
Pasquali, A., Cleeremans, A., Gaillard, V.: Reversible second-order conditional sequences in incidental sequence learning tasks. Q. J. Exp. Psychol. 72(5), 1164–1175 (2019). https://doi.org/10.1177/1747021818780690, https://doi.org/10.1177/1747021818780690, pMID: 29779443
Perea Restrepo, C.M.: Limpieza social. Una violencia mal nombrada. Bogotá: Centro Nacional de Memoria Histórica (2019). http://www.cervantesvirtual.com/obra/limpieza-social-una-violencia-mal-nombrada-879231
Perron, B., Arsenault, D., Picard, M., Therrien, C.: Methodological questions in ‘interactive film studies’. New Rev. Film Telev. Stud. 6(3), 233–252 (2008)
Potel, M.J., Sayre, R.E., Robertson, A.: A system for interactive film analysis. Comput. Biol. Med. 9(3), 237–256 (1979)
Prokasy, W.: Electrodermal activity in psychological research. Elsevier Sci. (2012). https://books.google.co.jp/books?id=m9l5ApC3avoC
Radúz, C., Ján, R., Vladimír, S.: Kinoautomat: One Man and His House. Czechoslovakia (1967)
Rico, O., Tag, B., Ohta, N., Sugiura, K.: Seamless multithread films in virtual reality. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, TEI 2017. ACM, New York, pp. 641–646 (2017). https://doi.org/10.1145/3024969.3025096, http://doi.acm.org/10.1145/3024969.3025096
Saeghe, P., et al.: Augmenting television with augmented reality. In: Proceedings of the 2019 ACM International Conference on Interactive Experiences for TV and Online Video, pp. 255–261 (2019)
Shu, L., et al.: A review of emotion recognition using physiological signals. Sensors (Switzerland) 18 (2018). https://doi.org/10.3390/s18072074
Slade, D.: Black Mirror: Bandersnatch (2018)
Welch, P.D.: The use of Fast Fourier transform for the estimation of power spectra. Digit. Sig. Process. 15(2), 532–574 (1975)
Wu, S., Du, Z., Li, W., Huang, D., Wang, Y.: Continuous emotion recognition in videos by fusing facial expression, head pose and eye gaze. In: 2019 International Conference on Multimodal Interaction, pp. 40–48 (2019)
Yadati, K., Katti, H., Kankanhalli, M.: Interactive video advertising: a multimodal affective approach. In: Li, S., et al. (eds.) MMM 2013. LNCS, vol. 7732, pp. 106–117. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35725-1_10
Zheng, W.L., Dong, B.N., Lu, B.L.: Multimodal emotion recognition using EEG and eye tracking data. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5040–5043. IEEE (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rico Garcia, O.D., Fernandez Fernandez, J., Becerra Saldana, R.A., Witkowski, O. (2022). Emotion-Driven Interactive Storytelling: Let Me Tell You How to Feel. In: Martins, T., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2022. Lecture Notes in Computer Science, vol 13221. Springer, Cham. https://doi.org/10.1007/978-3-031-03789-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-03789-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-03788-7
Online ISBN: 978-3-031-03789-4
eBook Packages: Computer ScienceComputer Science (R0)