Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stiffness and Transparency of a Collaborative Cable-Driven Parallel Robot

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2022 (ARK 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 24))

Included in the following conference series:

Abstract

The subject of this paper is about the relationship between the stiffness and the transparency of Cable-Driven Parallel Robots (CDPRs) used as human-machine interfaces in object comanipulation tasks. An index quantifying the transparency of a CDPR is first introduced. The stiffness of the robot is determined in simulation which parameters have been experimentally identified. Particular attention is paid to the effect of the Moving-Platform pose and cable tension management on CDPR stiffness. Then, the relationship between the stiffness and the transparency is analysed. Finally, the transparency index is traced throughout the constant-orientation static workspace and throughout the cable tension feasibility polygon for a given MP pose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Acquired from Corderie Lancelin, https://www.lancelin.com/en/.

References

  1. Barnett, E., Gosselin, C.: Large-scale 3D printing with a cable-suspended robot. Addit. Manuf. 7, 27–44 (2015). https://doi.org/10.1016/j.addma.2015.05.001

    Article  Google Scholar 

  2. Behzadipour, S., Khajepour, A.: Stiffness of cable-based parallel manipulators with application to stability analysis. J. Mech. Des. 128(1), 303–310 (2006). https://doi.org/10.1115/1.2114890

    Article  Google Scholar 

  3. Bolboli, J., Khosravi, M.A., Abdollahi, F.: Stiffness feasible workspace of cable-driven parallel robots with application to optimal design of a planar cable robot. Robot. Auton. Syst. 114, 19–28 (2019). https://doi.org/10.1016/j.robot.2019.01.012

    Article  Google Scholar 

  4. Bruckmann, T., Lalo, W., Nguyen, K., Salah, B.: Development of a storage retrieval machine for high racks using a wire robot. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference-2012, pp. 771–780. American Society of Mechanical Engineers, New York, NY (2012). https://doi.org/10.1115/DETC2012-70389

  5. Cui, Z., Tang, X.: Analysis of stiffness controllability of a redundant cable-driven parallel robot based on its configuration. Mechatronics 75, 102519 (2021). https://doi.org/10.1016/j.mechatronics.2021.102519

    Article  Google Scholar 

  6. Guay, F., Cardou, P., Cruz-Ruiz, A.L., Caro, S.: Measuring how well a structure supports varying external wrenches. In: Petuya, V., Pinto, C., Lovasz, E.C. (eds.) New Advances in Mechanisms, Transmissions and Applications, Mechanisms and Machine Science, vol. 17, pp. 385–392. Springer, New York (2013). https://doi.org/10.1007/978-94-007-7485-8_47

  7. Hogan, N.: Impedance control: an approach to manipulation: part I–theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985). https://doi.org/10.1115/1.3140702

    Article  MATH  Google Scholar 

  8. Jarrasse, N., Paik, J., Pasqui, V., Morel, G.: How can human motion prediction increase transparency? In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 2134–2139. IEEE Xplore, Pitscataway, NJ (2008). https://doi.org/10.1109/ROBOT.2008.4543522

  9. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993). https://doi.org/10.1109/70.258054

    Article  Google Scholar 

  10. Lyons, J.B.: Being transparent about transparency: a model for human-robot interaction. In: Trust and Autonomous Systems, Technical Report. Association for the Advancement of Artificial Intelligence SS, AAAI Press, Palo Alto, California (2013)

    Google Scholar 

  11. Merlet, J.P., Daney, D.: A portable, modular parallel wire crane for rescue operations. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2834–2839. IEEE, Piscataway, NJ (2010). https://doi.org/10.1109/ROBOT.2010.5509299

  12. Mikelsons, L., Bruckmann, T., Hiller, M., Schramm, D.: A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 3869–3874. IEEE Xplore, Pitscataway, NJ (2008). https://doi.org/10.1109/ROBOT.2008.4543805

  13. Picard, E., Caro, S., Plestan, F., Claveau, F.: Stiffness oriented tension distribution algorithm for cable-driven parallel robots. In: Lenarčič, J., Siciliano, B. (eds.) ARK 2020. SPAR, vol. 15, pp. 209–217. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-50975-0_26

    Chapter  Google Scholar 

  14. Picard, E., Plestan, F., Tahoumi, E., Claveau, F., Caro, S.: Control strategies for a cable-driven parallel robot with varying payload information. Mechatronics 79, 102648 (2021). https://doi.org/10.1016/j.mechatronics.2021.102648

    Article  Google Scholar 

  15. Roche, L., Saint-Bauzel, L.: High stiffness in teleoperated comanipulation: necessity or luxury? In: Lynch, K. (ed.) 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 477–483 (2018). https://doi.org/10.1109/ICRA.2018.8461005

  16. Yuan, H., Courteille, E., Deblaise, D.: Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity. Mech. Mach. Theory 85, 64–81 (2015). https://doi.org/10.1016/j.mechmachtheory.2014.10.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR CRAFT project, grant ANR-18-CE10-0004. https://anr.fr/Project-ANR-18-CE10-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Caro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Métillon, M., Charron, C., Subrin, K., Caro, S. (2022). Stiffness and Transparency of a Collaborative Cable-Driven Parallel Robot. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_12

Download citation

Publish with us

Policies and ethics