Abstract
Accurate infarct segmentation in non-contrast CT (NCCT) images is a crucial step toward computer-aided acute ischemic stroke (AIS) assessment. In clinical practice, bilateral symmetric comparison of brain hemispheres is usually used to locate pathological abnormalities. Recent research has explored asymmetries to assist with AIS segmentation. However, most previous symmetry-based work mixed different types of asymmetries when evaluating their contribution to AIS. In this paper, we propose a novel Asymmetry Disentanglement Network (ADN) to automatically separate pathological asymmetries and intrinsic anatomical asymmetries in NCCTs for more effective and interpretable AIS segmentation. ADN first performs asymmetry disentanglement based on input NCCTs, which produces different types of 3D asymmetry maps. Then a synthetic, intrinsic-asymmetry-compensated and pathology-asymmetry-salient NCCT volume is generated and later used as input to a segmentation network. The training of ADN incorporates domain knowledge and adopts a tissue-type aware regularization loss function to encourage clinically-meaningful pathological asymmetry extraction. Coupled with an unsupervised 3D transformation network, ADN achieves state-of-the-art AIS segmentation performance on a public NCCT dataset. In addition to the superior performance, we believe the learned clinically-interpretable asymmetry maps can also provide insights towards a better understanding of AIS assessment. Our code is available at https://github.com/nihaomiao/MICCAI22_ADN.
H. Ni and Y. Xue—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, A., et al.: Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014)
Ashburner, J., et al.: SPM12 manual. Wellcome Trust Centre for Neuroimaging, London, UK 2464, 4 (2014)
Ashburner, J., Friston, K.: Multimodal image coregistration and partitioning-a unified framework. Neuroimage 6(3), 209–217 (1997)
Bao, Q., Mi, S., Gang, B., Yang, W., Chen, J., Liao, Q.: MDAN: mirror difference aware network for brain stroke lesion segmentation. IEEE J. Biomed. Health Inform. 26(4), 1628–1639 (2021)
Barman, A., Inam, M.E., Lee, S., Savitz, S., Sheth, S., Giancardo, L.: Determining ischemic stroke from CT-angiography imaging using symmetry-sensitive convolutional networks. In: Proceedings of the IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1873–1877 (2019)
Chen, H., et al.: Anatomy-aware Siamese network: exploiting semantic asymmetry for accurate pelvic fracture detection in X-ray images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 239–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_15
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Clerigues, A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., Lladó, X.: Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks. Comput. Biol. Med. 115, 103487 (2019)
Feigin, V.L., et al.: Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20(10), 795–820 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems 28 (2015)
Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
Kim, M., Park, J., Na, S., Park, C.M., Yoo, D.: Learning visual context by comparison. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 576–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_34
Kuang, H., Menon, B.K., Qiu, W.: Automated infarct segmentation from follow-up non-contrast CT scans in patients with acute ischemic stroke using dense multi-path contextual generative adversarial network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 856–863. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_95
Kuang, H., Menon, B.K., Sohn, S.I., Qiu, W.: EIS-Net: segmenting early infarct and scoring ASPECTS simultaneously on non-contrast CT of patients with acute ischemic stroke. Med. Image Anal. 70, 101984 (2021)
Kuang, H., Najm, M., Menon, B.K., Qiu, W.: Joint segmentation of intracerebral hemorrhage and infarct from non-contrast CT images of post-treatment acute ischemic stroke patients. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 681–688. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_78
Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)
Liang, K., et al.: Symmetry-enhanced attention network for acute ischemic infarct segmentation with non-contrast CT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 432–441. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_41
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32 (2019)
Peter, R., et al.: A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography. Med. Phys. 44(1), 192–199 (2017)
Qiu, W., et al.: Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology 294(3), 638–644 (2020)
Rorden, C., Bonilha, L., Fridriksson, J., Bender, B., Karnath, H.O.: Age-specific CT and MRI templates for spatial normalization. Neuroimage 61(4), 957–965 (2012)
Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: DLMIA/ML-CDS 2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28
Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)
Virani, S.S., et al.: Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143(8), e254–e743 (2021)
Wang, Y., Katsaggelos, A.K., Wang, X., Parrish, T.B.: A deep symmetry convnet for stroke lesion segmentation. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 111–115 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ni, H. et al. (2022). Asymmetry Disentanglement Network for Interpretable Acute Ischemic Stroke Infarct Segmentation in Non-contrast CT Scans. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-16452-1_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16451-4
Online ISBN: 978-3-031-16452-1
eBook Packages: Computer ScienceComputer Science (R0)