Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Purchase Pattern Based Anti-Fraud Framework inĀ Online E-Commerce Platform Using Graph Neural Network

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

Abstract

Click Farming is fraudulent behaviors sponsored by malicious merchants to increase exposure by hiring fraudulent teams to place fraudulent orders, posing a serious threat to the operation of platforms. Traditional anti-fraud strategies are no longer applicable as they analyzed fraudulent behaviors individually and only rely on static statistical characteristics. In this paper, we propose a novel graph-based fraud detection framework deployed on JD.com composed of Dynamic Purchase Pattern learning (DPP) and Graph Neural Network with Similarities and Relations (GSR). Specifically, the DPP module is a feature extractor based on user click location sequences collected from websites. And the GSR module is a neighborhood sampling and aggregation algorithm for locating more accurate fraud groups and aggregating various information encoded by different types of subgroups. We conduct graph node classification experiments on a large-scale real-world dataset to verify the effectiveness of our framework, and the experimental results show that the DPP is able to capture more discriminative user patterns. Furthermore, GSR achieves the best performance compared to several state-of-the-art methods. Our method can be easily extended to other domains with the same problems as our task.

S. Wang and Y. Liuā€”Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Feature engineering strategies for credit card fraud detection. Expert Syst. Appl. 51, 134ā€“142 (2016)

    ArticleĀ  Google ScholarĀ 

  2. Barkan, O., Koenigstein, N.: ITEM2VEC: neural item embedding for collaborative filtering. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1ā€“6. IEEE (2016)

    Google ScholarĀ 

  3. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: a comparative study. Decis. Support Syst. 50(3), 602ā€“613 (2011)

    ArticleĀ  Google ScholarĀ 

  4. Bickart, B., Schindler, R.M.: Internet forums as influential sources of consumer information. J. Interact. Mark. 15(3), 31ā€“40 (2001)

    ArticleĀ  Google ScholarĀ 

  5. Chandradeva, L.S., Amarasinghe, T.M., De Silva, M., Aponso, A.C., Krishnarajah, N.: Monetary transaction fraud detection system based on machine learning strategies. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A. (eds.) Fourth International Congress on Information and Communication Technology. AISC, vol. 1041, pp. 385ā€“396. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0637-6_33

    ChapterĀ  Google ScholarĀ 

  6. Eberle, W., Holder, L.: Discovering structural anomalies in graph-based data. In: Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), pp. 393ā€“398. IEEE (2007)

    Google ScholarĀ 

  7. Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Exploiting burstiness in reviews for review spammer detection. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)

    Google ScholarĀ 

  8. Georgieva, S., Markova, M., Pavlov, V.: Using neural network for credit card fraud detection. In: AIP Conference Proceedings, vol. 2159, p. 030013. AIP Publishing LLC (2019)

    Google ScholarĀ 

  9. Glover, S., Benbasat, I.: A comprehensive model of perceived risk of e-commerce transactions. Int. J. Electron. Commer. 15(2), 47ā€“78 (2010)

    ArticleĀ  Google ScholarĀ 

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024ā€“1034 (2017)

    Google ScholarĀ 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Coference on Learning Representations (ICLR) (2017)

    Google ScholarĀ 

  12. Lim, E.P., Nguyen, V.A., Jindal, N., Liu, B., Lauw, H.W.: Detecting product review spammers using rating behaviors. In: Proceedings of the 19th ACM International Conference on Information And Knowledge Management, pp. 939ā€“948 (2010)

    Google ScholarĀ 

  13. Manzoor, E., Milajerdi, S.M., Akoglu, L.: Fast memory-efficient anomaly detection in streaming heterogeneous graphs. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1035ā€“1044 (2016)

    Google ScholarĀ 

  14. Pourhabibi, T., Ong, K.L., Kam, B.H., Boo, Y.L.: Fraud detection: a systematic literature review of graph-based anomaly detection approaches. Decis. Support Syst. 133, 113303 (2020)

    Google ScholarĀ 

  15. Shehnepoor, S., Salehi, M., Farahbakhsh, R., Crespi, N.: Netspam: a network-based spam detection framework for reviews in online social media. IEEE Trans. Inf. Forensics Secur. 12(7), 1585ā€“1595 (2017)

    ArticleĀ  Google ScholarĀ 

  16. Sun, C., Gu, H., Hu, J.: Scalable and adaptive graph neural networks with self-label-enhanced training. arXiv preprint arXiv:2104.09376 (2021)

  17. Tao, J., Wang, H., Xiong, T.: Selective graph attention networks for account takeover detection. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 49ā€“54. IEEE (2018)

    Google ScholarĀ 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google ScholarĀ 

  19. Wang, S., Liu, C., Gao, X., Qu, H., Xu, W.: Session-based fraud detection in online e-commerce transactions using recurrent neural networks. In: Altun, Y., et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 241ā€“252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4_20

    ChapterĀ  Google ScholarĀ 

  20. Wu, X., Dong, Y., Tao, J., Huang, C., Chawla, N.V.: Reliable fake review detection via modeling temporal and behavioral patterns. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 494ā€“499. IEEE (2017)

    Google ScholarĀ 

  21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference on Learning Representations (ICLR) (2019)

    Google ScholarĀ 

  22. Zhang, C., He, Y., Cen, Y., Hou, Z., Tang, J.: Improving the training of graph neural networks with consistency regularization. arXiv preprint arXiv:2112.04319 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanpeng Wang , Chu Zheng or Rui Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Liu, Y., Zheng, C., Lin, R. (2022). Purchase Pattern Based Anti-Fraud Framework inĀ Online E-Commerce Platform Using Graph Neural Network. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics