Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Differential-Neural Cryptanalysis

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Abstract

In CRYPTO 2019, Gohr shows that well-trained neural networks can perform cryptanalytic distinguishing tasks superior to traditional differential distinguishers. Moreover, applying an unorthodox key guessing strategy, an 11-round key-recovery attack on a modern block cipher Speck32/64 improves upon the published state-of-the-art result. This calls into the next questions. To what extent is the advantage of machine learning (ML) over traditional methods, and whether the advantage generally exists in the cryptanalysis of modern ciphers? To answer the first question, we devised ML-based key-recovery attacks on more extended round-reduced Speck32/64. We achieved an improved 12-round and the first practical 13-round attacks. The essential for the new results is enhancing a classical component in the ML-based attacks, that is, the neutral bits. To answer the second question, we produced various neural distinguishers on round-reduced Simon32/64 and provided comparisons with their pure differential-based counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Speck can be represented as a composition of two Feistel maps [6].

  2. 2.

    For Speck, there is no whitening key and the first subkey is XORed after the first non-linear operation, which makes the first round free in differential attack (see the top of Fig. 3 in [5]).

  3. 3.

    In these considered variables, \(({x_1}, {y_1}) = (\tilde{x}_1\oplus k_0, \tilde{y}_1\oplus k_0)\) is the real input to the \(\mathcal{C}\mathcal{D}\) (see Fig. 3 in [5]), where \((\tilde{x}_1, \tilde{y}_1)\) is the chosen data in the key-recovery attack (since, in the key-recovery attack, the \(\mathcal{C}\mathcal{D}\) will be freely extended one round backward).

  4. 4.

    Since the first two 3-round \(\mathcal{C}\mathcal{D}\)s are used as paired differentials, the key bit \(k_0[5] \oplus k_0[14]\) does not need to be guessed. Besides, since the CSNBS [6, 11, 12, 18] in Table  4 is not used in the attack, the key bit \(k_0[2] \oplus k_0[11]\) does not need to be guessed. In total only 5 bits of \(k_0\) are guessed.

  5. 5.

    Tesla V100-SXM2-32GB, computeCapability: 7.0; coreClock: 1.53 GHz; coreCount: 80; deviceMemorySize: 31.72 GB; deviceMemoryBandwidth: 836.37 GB/s).

  6. 6.

    Under the assumption that one second equals the time of \(2^{28}\) executions of Speck32/64 on a CPU, and \(r = \log _{2}(cpu/gpu)\), where cpu is the CPU time and gpu is the GPU time running an attack. In our computing systems, \(r=2.4\).

  7. 7.

    Equipped with a 32-core Intel Cascade-Lake Xeon(R) Platinum 9221 2.30 GHz, and with 384 GB RAM, on CentOS 7.6.

  8. 8.

    Some \({v_2}_{\textrm{max}}\)’s corresponding to success cases are lower than cutoff \(c_2\); that is due to the final improvement.

References

  1. Abadi, M., Andersen, D.G.: Learning to protect communications with adversarial neural cryptography. arXiv preprint arXiv:1610.06918 (2016)

  2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27

    Chapter  Google Scholar 

  3. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON family of block ciphers. Cryptology ePrint Archive, Report 2013/543 (2013). https://eprint.iacr.org/2013/543

  4. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_30

    Chapter  Google Scholar 

  5. Bao, Z., Guo, J., Liu, M., Ma, L., Tu, Y.: Enhancing differential-neural cryptanalysis. Cryptology ePrint Archive, Report 2021/719 (2021). https://eprint.iacr.org/2021/719

  6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). https://eprint.iacr.org/2013/404

  7. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine learning-based cryptanalysis. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 805–835. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_28

    Chapter  Google Scholar 

  8. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_18

    Chapter  Google Scholar 

  9. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28

    Chapter  Google Scholar 

  10. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_1

    Chapter  Google Scholar 

  11. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9

    Chapter  Google Scholar 

  12. Gohr, A.: Implementation of the Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning. GitHub Repository (2019). https://github.com/agohr/deep_speck

  13. Gohr, A.: improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    Chapter  Google Scholar 

  14. Gomez, A.N., Huang, S., Zhang, I., Li, B.M., Osama, M. and Kaiser, L.: Unsupervised cipher cracking using discrete gans. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings (2018). OpenReview.net

    Google Scholar 

  15. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2), 133–160 (2018)

    Article  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  17. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  Google Scholar 

  18. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269. IEEE Computer Society (2017)

    Google Scholar 

  19. Joux, A., Peyrin, T.: Hash functions and the (Amplified) Boomerang attack. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_14

    Chapter  Google Scholar 

  20. Klima, V.: Tunnels in hash functions: MD5 collisions within a minute. Cryptology ePrint Archive, Report 2006/105 (2006). https://eprint.iacr.org/2006/105

  21. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_8

    Chapter  Google Scholar 

  22. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8

    Chapter  Google Scholar 

  23. Leurent, G.: Construction of differential characteristics in ARX designs application to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 241–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_14

    Chapter  MATH  Google Scholar 

  24. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. IACR TCHES 2021(3), 677–707 (2021). https://tches.iacr.org/index.php/TCHES/article/view/8989

  25. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_36

    Chapter  Google Scholar 

  26. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MATH  Google Scholar 

  27. Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. Cryptology ePrint Archive, Report 2016/209 (2016). https://eprint.iacr.org/2016/209

  28. Wang, N., Wang, X., Jia, K., Zhao, J.: Differential attacks on reduced SIMON versions with dynamic key-guessing techniques. Cryptology ePrint Archive, Report 2014/448 (2014). https://eprint.iacr.org/2014/448

  29. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_2

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their insightful and helpful comments which helped us improve the manuscript significantly. This research is partially supported by Nanyang Technological University in Singapore under Start-up Grant 04INS000397C230, and Ministry of Education in Singapore under Grants RG91/20 and MOE2019-T2-1-060; Zhenzhen Bao was supported by the Gopalakrishnan – NTU Presidential Postdoctoral Fellowship 2020; the Tsinghua University in China under Start-up Grant 533344001; the National Key R &D Program of China (Grant No. 2018YFA0704701), the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008), the Shandong Province Key R &D Project (Nos. 2020ZLYS09 and 2019JZZY010133). Meicheng Liu was supported by the National Natural Science Foundation of China (Grant Nos. 62122085 and 12231015), and the Youth Innovation Promotion Association of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhen Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, Z., Guo, J., Liu, M., Ma, L., Tu, Y. (2022). Enhancing Differential-Neural Cryptanalysis. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22963-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22962-6

  • Online ISBN: 978-3-031-22963-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics