Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Magnetic Resonance Imaging of Neuroinflammation

  • Chapter
  • First Online:
Imaging Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 91))

  • 563 Accesses

Abstract

Magnetic resonance imaging is a powerful tool in preclinical research of diseases with associated neuroinflammation, as it allows high-resolution imaging without harmful ionizing radiation. The development of targetable iron oxide contrast agents, such as microparticles of iron oxide (MPIO), has greatly enhanced molecular MRI for superior detection of target molecules. Cell adhesion molecules (CAMs) are upregulated early in neuroinflammation on the luminal side of activated endothelial cells within the blood-brain barrier, making them a highly accessible target. Targeting MPIO with CAM antibodies has improved the early detection of neuropathologies in preclinical models, as well as providing further insight into disease progression and mechanisms. This chapter highlights the uses of molecular MRI, specifically CAM-targeted MPIO, for investigating multiple sclerosis, stroke, epilepsy, and brain cancer and how the advances made in these preclinical models have the potential to be transferred to other neuropathologies and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from picture to proton. 2nd ed. Cambridge: Cambridge University Press; 2006. https://doi.org/10.1017/CBO9780511545405.

    Book  Google Scholar 

  2. Gauberti M, Martinez de Lizarrondo S. Molecular MRI of neuroinflammation: time to overcome the translational roadblock. Neuroscience. 2021;474:30–6. https://doi.org/10.1016/j.neuroscience.2021.08.016.

    Article  CAS  PubMed  Google Scholar 

  3. Serhan CN, Ward PA, Gilroy DW, editors. Fundamentals of inflammation. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  4. Darnell JE, Lodish H, Berk A, Zipursky L, Matsudaira P, Baltimore D. Molecular cell biology. 4th ed. New York, NY: W.H. Freeman & Co; 2000.

    Google Scholar 

  5. Serres S, O’Brien ER, Sibson NR. Imaging angiogenesis, inflammation, and metastasis in the tumor microenvironment with magnetic resonance imaging. In: Koumenis C, Hammond E, Giaccia A, editors. Tumor microenviron cell stress. New-York, USA: Springer; 2014. p. 263–83. https://doi.org/10.1007/978-1-4614-5915-6_12.

    Chapter  Google Scholar 

  6. Helm L, Morrow JR, Bond CJ, Carniato F, Botta M, Braun M, et al. Chapter 2. Gadolinium-based Contrast Agents. 2017. p. 121–242. https://doi.org/10.1039/9781788010146-00121.

  7. Runge VM, Clanton JA, Price AC, Wehr CJ, Herzer WA, Partain CL, et al. The use of GD DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn Reson Imaging. 1985;3:43–55. https://doi.org/10.1016/0730-725X(85)90008-6.

    Article  CAS  PubMed  Google Scholar 

  8. Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther. 2016;33:1–28. https://doi.org/10.1007/s12325-015-0275-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zarghami N, Khrapitchev AA, Perez-Balderas F, Sarmiento Soto M, Larkin JR, Bau L, et al. Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles. Int J Nanomedicine. 2018;13:4345–59. https://doi.org/10.2147/IJN.S158071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19:1584–96. https://doi.org/10.1038/nm.3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sibson NR, Blamire AM, Bernades-Silva M, Laurent S, Boutry S, Muller RN, et al. MRI detection of early endothelial activation in brain inflammation. Magn Reson Med. 2004;51:248–52. https://doi.org/10.1002/mrm.10723.

    Article  CAS  PubMed  Google Scholar 

  12. Artemov D, Mori N, Ravi R, Bhujwalla ZM. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res. 2003;63:2723–7.

    CAS  PubMed  Google Scholar 

  13. Melemenidis S, Jefferson A, Ruparelia N, Akhtar AM, Xie J, Allen D, et al. Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics. 2015;5:515–29. https://doi.org/10.7150/thno.10319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Y, Yang Y, Yanasak N, Schumacher A, Hu TC-C. Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles. Magn Reson Med. 2010;63:33–40. https://doi.org/10.1002/mrm.22175.

    Article  CAS  PubMed  Google Scholar 

  15. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP. MRI detection of single particles for cellular imaging. Proc Natl Acad Sci. 2004;101:10901–6. https://doi.org/10.1073/pnas.0403918101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT, et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med. 2006;56:1001–10. https://doi.org/10.1002/mrm.21029.

    Article  PubMed  Google Scholar 

  17. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41:694–707. https://doi.org/10.1016/j.immuni.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  18. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89. https://doi.org/10.1038/nri2156.

    Article  CAS  PubMed  Google Scholar 

  19. Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol. 2013;50:7–22. https://doi.org/10.1177/0300985812469883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jefferson A, Ruparelia N, Choudhury RP. Exogenous microparticles of iron oxide bind to activated endothelial cells but, unlike monocytes, do not trigger an endothelial response. Theranostics. 2013;3:428–36. https://doi.org/10.7150/thno.5895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McAteer MA, Sibson NR, von zur Muhlen C, Schneider JE, Lowe AS, Warrick N, et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med. 2007;13:1253–8. https://doi.org/10.1038/nm1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17. https://doi.org/10.1016/S0140-6736(08)61620-7.

    Article  CAS  PubMed  Google Scholar 

  23. Lucchinetti CF, Popescu BFG, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365:2188–97. https://doi.org/10.1056/NEJMoa1100648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lassmann H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol. 2019:9. https://doi.org/10.3389/fimmu.2018.03116.

  25. Trip SA, Miller DH. Imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2005;76:iii11–8. https://doi.org/10.1136/jnnp.2005.073213.

    Article  Google Scholar 

  26. Hartung H-P, Reiners K, Archelos JJ, Michels M, Seeldrayers P, Heidenreich F, et al. Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol. 1995;38:186–93. https://doi.org/10.1002/ana.410380210.

    Article  CAS  PubMed  Google Scholar 

  27. Cannella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol. 1995;37:424–35. https://doi.org/10.1002/ana.410370404.

    Article  CAS  PubMed  Google Scholar 

  28. Kuwahara H, Nishina K, Yokota T. Blood-brain barrier: a novel therapeutic target in multiple sclerosis. Clin Exp Neuroimmunol. 2015;6:129–38. https://doi.org/10.1111/cen3.12212.

    Article  CAS  Google Scholar 

  29. Blezer ELA, Deddens LH, Kooij G, Drexhage J, van der Pol SMA, Reijerkerk A, et al. In vivo MR imaging of intercellular adhesion molecule-1 expression in an animal model of multiple sclerosis. Contrast Media Mol Imaging. 2015;10:111–21. https://doi.org/10.1002/cmmi.1602.

    Article  CAS  PubMed  Google Scholar 

  30. Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci. 2014:8. https://doi.org/10.3389/fncel.2014.00389.

  31. Mardiguian S, Serres S, Ladds E, Campbell SJ, Wilainam P, McFadyen C, et al. Anti–IL-17A treatment reduces clinical score and VCAM-1 expression detected by in vivo magnetic resonance imaging in chronic relapsing EAE ABH mice. Am J Pathol. 2013;182:2071–81. https://doi.org/10.1016/j.ajpath.2013.02.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Serres S, Mardiguian S, Campbell SJ, McAteer MA, Akhtar A, Krapitchev A, et al. VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J. 2011;25:4415–22. https://doi.org/10.1096/fj.11-183772.

    Article  CAS  PubMed  Google Scholar 

  33. Towner RA, Smith N, Zalles M, Morris S, Toliver M, Saunders D, et al. ELTD1 as a biomarker for multiple sclerosis: pre-clinical molecular-targeted studies in a mouse experimental autoimmune encephalomyelitis model. Mult Scler Relat Disord. 2021;49:102786. https://doi.org/10.1016/j.msard.2021.102786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG. Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci. 2009;106:18–23. https://doi.org/10.1073/pnas.0806787106.

    Article  PubMed  Google Scholar 

  35. Fournier AP, Quenault A, Martinez de Lizarrondo S, Gauberti M, Defer G, Vivien D, et al. Prediction of disease activity in models of multiple sclerosis by molecular magnetic resonance imaging of P-selectin. Proc Natl Acad Sci. 2017;114:6116–21. https://doi.org/10.1073/pnas.1619424114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B. PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol. 2014;44:2287–94. https://doi.org/10.1002/eji.201344214.

    Article  CAS  PubMed  Google Scholar 

  37. Carrithers MD, Visintin I, Kang SJ, Janeway CA. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain. 2000;123:1092–101. https://doi.org/10.1093/brain/123.6.1092.

    Article  PubMed  Google Scholar 

  38. Sobel RA, Mitchell ME, Fondren G. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol. 1990;136:1309–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cannella B, Cross AH, Raine CS. Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J Exp Med. 1990;172:1521–4. https://doi.org/10.1084/jem.172.5.1521.

    Article  CAS  PubMed  Google Scholar 

  40. Kelly PJ, Lemmens R, Tsivgoulis G. Inflammation and stroke risk: a new target for prevention. Stroke. 2021;52:2697–706. https://doi.org/10.1161/STROKEAHA.121.034388.

    Article  PubMed  Google Scholar 

  41. Conen D, Ridker PM, Everett BM, Tedrow UB, Rose L, Cook NR, et al. A multimarker approach to assess the influence of inflammation on the incidence of atrial fibrillation in women. Eur Heart J. 2010;31:1730–6. https://doi.org/10.1093/eurheartj/ehq146.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jin AY, Tuor UI, Rushforth D, Filfil R, Kaur J, Ni F, et al. Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging. 2009;4:305–11. https://doi.org/10.1002/cmmi.292.

    Article  CAS  PubMed  Google Scholar 

  43. Hoyte LC, Brooks KJ, Nagel S, Akhtar A, Chen R, Mardiguian S, et al. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:1178–87. https://doi.org/10.1038/jcbfm.2009.287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gauberti M, Montagne A, Marcos-Contreras OA, Le Béhot A, Maubert E, Vivien D. Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes. Stroke. 2013;44:1988–96. https://doi.org/10.1161/STROKEAHA.111.000544.

    Article  CAS  PubMed  Google Scholar 

  45. Deddens LH, van Tilborg GAF, van der Toorn A, van der Marel K, Paulis LEM, van Bloois L, et al. MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent. Mol Imaging Biol. 2013;15:411–22. https://doi.org/10.1007/s11307-013-0617-z.

    Article  PubMed  Google Scholar 

  46. Deddens LH, van Tilborg GAF, van der Marel K, Hunt H, van der Toorn A, Viergever MA, et al. In vivo molecular MRI of ICAM-1 expression on endothelium and leukocytes from subacute to chronic stages after experimental stroke. Transl Stroke Res. 2017;8:440–8. https://doi.org/10.1007/s12975-017-0536-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quenault A, Martinez de Lizarrondo S, Etard O, Gauberti M, Orset C, Haelewyn B, et al. Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain. 2017;140:146–57. https://doi.org/10.1093/brain/aww260.

    Article  PubMed  Google Scholar 

  48. Gauberti M, De Lizarrondo SM, Vivien D. The “inflammatory penumbra” in ischemic stroke: From clinical data to experimental evidence. Eur Stroke J. 2016;1:20–7. https://doi.org/10.1177/2396987316630249.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spera PA, Ellison JA, Feuerstein GZ, Barone FC. IL-10 reduces rat brain injury following focal stroke. Neurosci Lett. 1998;251:189–92. https://doi.org/10.1016/S0304-3940(98)00537-0.

    Article  CAS  PubMed  Google Scholar 

  50. Maglinger B, Sands M, Frank JA, McLouth CJ, Trout AL, Roberts JM, et al. Intracranial VCAM1 at time of mechanical thrombectomy predicts ischemic stroke severity. J Neuroinflammation. 2021;18:109. https://doi.org/10.1186/s12974-021-02157-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang R-L, Chopp M, Zaloga C, Zhang ZG, Jiang N, Gautam SC, et al. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Res. 1995;682:182–8. https://doi.org/10.1016/0006-8993(95)00346-R.

    Article  CAS  PubMed  Google Scholar 

  52. Shyu K-G, Chang H, Lin C-C. Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. J Neurol. 1997;244:90–3. https://doi.org/10.1007/s004150050055.

    Article  CAS  PubMed  Google Scholar 

  53. Duffy BA, Choy M, Riegler J, Wells JA, Anthony DC, Scott RC, et al. Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent. NeuroImage. 2012;60:1149–55. https://doi.org/10.1016/j.neuroimage.2012.01.048.

    Article  CAS  PubMed  Google Scholar 

  54. Serres S, Soto MS, Hamilton A, McAteer MA, Carbonell WS, Robson MD, et al. Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci. 2012;109:6674–9. https://doi.org/10.1073/pnas.1117412109.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cheng VWT, de Pennington N, Zakaria R, Larkin JR, Serres S, Sarkar M, et al. VCAM-1–targeted MRI improves detection of the tumor-brain interface. Clin Cancer Res. 2022:OF1–12. https://doi.org/10.1158/1078-0432.CCR-21-4011.

  56. Montagne A, Gauberti M, Macrez R, Jullienne A, Briens A, Raynaud J-S, et al. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. NeuroImage. 2012;63:760–70. https://doi.org/10.1016/j.neuroimage.2012.07.018.

    Article  PubMed  Google Scholar 

  57. Amhaoul H, Staelens S, Dedeurwaerdere S. Imaging brain inflammation in epilepsy. Neuroscience. 2014;279:238–52. https://doi.org/10.1016/j.neuroscience.2014.08.044.

    Article  CAS  PubMed  Google Scholar 

  58. Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15:459–72. https://doi.org/10.1038/s41582-019-0217-x.

    Article  CAS  PubMed  Google Scholar 

  59. Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 2019;142:e39. https://doi.org/10.1093/brain/awz130.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29:142–60. https://doi.org/10.1016/j.nbd.2007.08.012.

    Article  CAS  PubMed  Google Scholar 

  61. Aronica E, Crino PB. Inflammation in epilepsy: clinical observations. Epilepsia. 2011;52:26–32. https://doi.org/10.1111/j.1528-1167.2011.03033.x.

    Article  PubMed  Google Scholar 

  62. Bogdanović RM, Syvänen S, Michler C, Russmann V, Eriksson J, Windhorst AD, et al. (R)-[11C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance: evaluation in a rat epilepsy model. Neuropharmacology. 2014;85:104–12. https://doi.org/10.1016/j.neuropharm.2014.05.002.

    Article  CAS  PubMed  Google Scholar 

  63. Li LM, Fish DR, Sisodiya SM, Shorvon SD, Alsanjari N, Stevens JM. High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit. J Neurol Neurosurg Psychiatry. 1995;59:384–7. https://doi.org/10.1136/jnnp.59.4.384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cascino GD, Jack CR, Parisi JE, Sharbrough FW, Hirschorn KA, Meyer FB, et al. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. Ann Neurol. 1991;30:31–6. https://doi.org/10.1002/ana.410300107.

    Article  CAS  PubMed  Google Scholar 

  65. Peixoto-Santos JE, de Carvalho LED, Kandratavicius L, Diniz PRB, Scandiuzzi RC, Coras R, et al. Manual hippocampal subfield segmentation using high-field MRI: impact of different subfields in hippocampal volume loss of temporal lobe epilepsy patients. Front Neurol. 2018;9 https://doi.org/10.3389/fneur.2018.00927.

  66. Fabene PF, Mora GN, Martinello M, Rossi B, Merigo F, Ottoboni L, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 2008;14:1377–83. https://doi.org/10.1038/nm.1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. WHO. World Health Organization Health Topics Cancer. 2021;

    Google Scholar 

  68. Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, et al. Brain metastases. Nat Rev Dis Prim. 2019;5:5. https://doi.org/10.1038/s41572-018-0055-y.

    Article  PubMed  Google Scholar 

  69. Steeg PS. The blood–tumour barrier in cancer biology and therapy. Nat Rev Clin Oncol. 2021;18:696–714. https://doi.org/10.1038/s41571-021-00529-6.

    Article  PubMed  Google Scholar 

  70. Stelzer KJ. Epidemiology and prognosis of brain metastases. Surg Neurol Int. 2013;4:192. https://doi.org/10.4103/2152-7806.111296.

    Article  Google Scholar 

  71. Mehrabian H, Detsky J, Soliman H, Sahgal A, Stanisz GJ. Advanced magnetic resonance imaging techniques in Management of Brain Metastases. Front Oncol. 2019:9. https://doi.org/10.3389/fonc.2019.00440.

  72. Khatib AM, Kontogiannea M, Fallavollita L, Jamison B, Meterissian S, Brodt P. Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res. 1999;59:1356–61.

    CAS  PubMed  Google Scholar 

  73. Läubli H, Borsig L. Selectins as mediators of lung metastasis. Cancer Microenviron. 2010;3:97–105. https://doi.org/10.1007/s12307-010-0043-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, Fuentes AM, Anasagasti MJ, Martín J, et al. IL-18 regulates IL-1 β -dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci. 2000;97:734–9. https://doi.org/10.1073/pnas.97.2.734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carbonell WS, Ansorge O, Sibson N, Muschel R. The vascular basement membrane as “soil” in brain metastasis. Cordes N, editor. PLoS One. 2009;4:e5857. https://doi.org/10.1371/journal.pone.0005857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal. 2008;6:10. https://doi.org/10.1186/1478-811X-6-10.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Soto MS, Serres S, Anthony DC, Sibson NR. Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro-Oncology. 2014;16:540–51. https://doi.org/10.1093/neuonc/not222.

    Article  CAS  PubMed  Google Scholar 

  78. Cheng VWT, Soto MS, Khrapitchev AA, Perez-Balderas F, Zakaria R, Jenkinson MD, et al. VCAM-1–targeted MRI enables detection of brain micrometastases from different primary Tumors. Clin Cancer Res. 2019;25:533–43. https://doi.org/10.1158/1078-0432.CCR-18-1889.

    Article  CAS  PubMed  Google Scholar 

  79. Lyck R, Lécuyer M-A, Abadier M, Wyss CB, Matti C, Rosito M, et al. ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood–brain barrier. J Cereb Blood Flow Metab. 2017;37:2894–909. https://doi.org/10.1177/0271678X16678639.

    Article  CAS  PubMed  Google Scholar 

  80. Masedunskas A, King JA, Tan F, Cochran R, Stevens T, Sviridov D, et al. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 2006;580:2637–45. https://doi.org/10.1016/j.febslet.2006.04.013.

    Article  CAS  PubMed  Google Scholar 

  81. Michel L, Grasmuck C, Charabati M, Lécuyer M-A, Zandee S, Dhaeze T, et al. Activated leukocyte cell adhesion molecule regulates B lymphocyte migration across central nervous system barriers. Sci Transl Med. 2019:11. https://doi.org/10.1126/scitranslmed.aaw0475.

  82. Zarghami N, Soto MS, Perez-Balderas F, Khrapitchev AA, Karali CS, Johanssen VA, et al. A novel molecular magnetic resonance imaging agent targeting activated leukocyte cell adhesion molecule as demonstrated in mouse brain metastasis models. J Cereb Blood Flow Metab. 2021;41:1592–607. https://doi.org/10.1177/0271678X20968943.

    Article  CAS  PubMed  Google Scholar 

  83. Burdick MM, Henson KA, Delgadillo LF, Choi YE, Goetz DJ, Tees DFJ, et al. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front Oncol. 2012:2. https://doi.org/10.3389/fonc.2012.00103.

  84. Jassam S, Maherally Z, Smith J, Ashkan K, Roncaroli F, Fillmore H, et al. CD15s/CD62E interaction mediates the adhesion of non-small cell lung cancer cells on brain endothelial cells: implications for cerebral metastasis. Int J Mol Sci. 2017;18:1474. https://doi.org/10.3390/ijms18071474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barber PA, Foniok T, Kirk D, Buchan AM, Laurent S, Boutry S, et al. MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol. 2004;56:116–20. https://doi.org/10.1002/ana.20162.

    Article  CAS  PubMed  Google Scholar 

  86. Zarghami N. Novel molecular MRI approaches to the detection of brain metastasis. University of Oxford; 2019.

    Google Scholar 

  87. Ren X, Ghassemi P, Babahosseini H, Strobl JS, Agah M. Single-cell mechanical characteristics analyzed by multiconstriction microfluidic channels. ACS Sensors. 2017;2:290–9. https://doi.org/10.1021/acssensors.6b00823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72. https://doi.org/10.1038/s41582-020-00435-y.

    Article  PubMed  Google Scholar 

  89. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72. https://doi.org/10.1038/nrn3880.

    Article  CAS  PubMed  Google Scholar 

  90. Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation. 2011;8:26. https://doi.org/10.1186/1742-2094-8-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feigin VL, Vos T, Alahdab F, Amit AML, Bärnighausen TW, Beghi E, et al. Burden of neurological disorders across the US from 1990-2017. JAMA Neurol. 2021;78:165. https://doi.org/10.1001/jamaneurol.2020.4152.

    Article  PubMed  Google Scholar 

  92. von zur Muhlen C, Sibson NR, Peter K, Campbell SJ, Wilainam P, Grau GE, et al. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. J Clin Invest. 2008; https://doi.org/10.1172/JCI33314.

  93. von zur Muhlen C, Peter K, Ali ZA, Schneider JE, McAteer MA, Neubauer S, et al. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein IIb/IIIa. J Vasc Res. 2009;46:6–14. https://doi.org/10.1159/000135660.

    Article  CAS  PubMed  Google Scholar 

  94. von zur Muhlen C, von Elverfeldt D, Moeller JA, Choudhury RP, Paul D, Hagemeyer CE, et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation. 2008;118:258–67. https://doi.org/10.1161/CIRCULATIONAHA.107.753657.

    Article  CAS  PubMed  Google Scholar 

  95. Maier A, Braig M, Jakob K, Bienert T, Schäper M, Merkle A, et al. Molecular magnetic resonance imaging of activated platelets allows noninvasive detection of early myocarditis in mice. Sci Rep. 2020;10:13211. https://doi.org/10.1038/s41598-020-70043-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Belliere J, Martinez de Lizarrondo S, Choudhury RP, Quenault A, Le Béhot A, Delage C, et al. Unmasking silent endothelial activation in the cardiovascular system using molecular magnetic resonance imaging. Theranostics. 2015;5:1187–202. https://doi.org/10.7150/thno.11835.

    Article  PubMed  PubMed Central  Google Scholar 

  97. McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28:77–83. https://doi.org/10.1161/ATVBAHA.107.145466.

    Article  CAS  PubMed  Google Scholar 

  98. Akhtar AM, Schneider JE, Chapman SJ, Jefferson A, Digby JE, Mankia K, et al. In vivo quantification of VCAM-1 expression in renal ischemia reperfusion injury using non-invasive magnetic resonance molecular imaging. Fadini GP, editor. PLoS One. 2010;5:e12800. https://doi.org/10.1371/journal.pone.0012800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fournier AP, Martinez de Lizarrondo S, Rateau A, Gerard-Brisou A, Waldner MJ, Neurath MF, et al. Ultrasensitive molecular imaging of intestinal mucosal inflammation using leukocyte-mimicking particles targeted to MAdCAM-1 in mice. Sci Transl Med. 2020:12. https://doi.org/10.1126/scitranslmed.aaz4047.

  100. Biederer J. General requirements of MRI of the lung and suggested standard protocol. In: Kauczor H-U, Wielpütz M, editors. MRI Lung. Cham: Springer International Publishing; 2017. p. 1–20. https://doi.org/10.1007/174_2017_98.

    Chapter  Google Scholar 

  101. Chesebro AG, Amarante E, Lao PJ, Meier IB, Mayeux R, Brickman AM. Automated detection of cerebral microbleeds on T2*-weighted MRI. Sci Rep. 2021;11:4004. https://doi.org/10.1038/s41598-021-83607-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gaberel T, Gakuba C, Hebert M, Montagne A, Agin V, Rubio M, et al. Intracerebral hematomas disappear on T2*-weighted images during normobaric oxygen therapy. Stroke. 2013;44:3482–9. https://doi.org/10.1161/STROKEAHA.113.002045.

    Article  CAS  PubMed  Google Scholar 

  103. Goulay R, Drieu A, Di Palma C, Pro-Sistiaga P, Delcroix N, Chazalviel L, et al. Modification of apparent intracerebral hematoma volume on T2 ∗ −weighted images during normobaric oxygen therapy may contribute to false diagnosis. J Clin Neurosci. 2018;52:105–8. https://doi.org/10.1016/j.jocn.2018.01.046.

    Article  PubMed  Google Scholar 

  104. Chen Z, Ding J, Wu X, Bao B, Cao X, Wu X, et al. Safety and efficacy of normobaric oxygenation on rescuing acute intracerebral hemorrhage-mediated brain damage—a protocol of randomized controlled trial. Trials. 2021;22:93. https://doi.org/10.1186/s13063-021-05048-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Corroyer-Dulmont A, Valable S, Falzone N, Frelin-Labalme A-M, Tietz O, Toutain J, et al. VCAM-1 targeted alpha-particle therapy for early brain metastases. Neuro-Oncology. 2020;22:357–68. https://doi.org/10.1093/neuonc/noz169.

    Article  CAS  PubMed  Google Scholar 

  106. Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Sen GA. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale. 2018;10:15350–64. https://doi.org/10.1039/C8NR04042G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gentile F, Curcio A, Indolfi C, Ferrari M, Decuzzi P. The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnol. 2008;6:9. https://doi.org/10.1186/1477-3155-6-9.

    Article  CAS  Google Scholar 

  108. Charoenphol P, Mocherla S, Bouis D, Namdee K, Pinsky DJ, Eniola-Adefeso O. Targeting therapeutics to the vascular wall in atherosclerosis–carrier size matters. Atherosclerosis. 2011;217:364–70. https://doi.org/10.1016/j.atherosclerosis.2011.04.016.

    Article  CAS  PubMed  Google Scholar 

  109. Charoenphol P, Onyskiw PJ, Carrasco-Teja M, Eniola-Adefeso O. Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery. J Biomech. 2012;45:2822–8. https://doi.org/10.1016/j.jbiomech.2012.08.035.

    Article  PubMed  Google Scholar 

  110. Lee T-R, Choi M, Kopacz AM, Yun S-H, Liu WK, Decuzzi P. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Sci Rep. 2013;3:2079. https://doi.org/10.1038/srep02079.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fish MB, Banka AL, Braunreuther M, Fromen CA, Kelley WJ, Lee J, et al. Deformable microparticles for shuttling nanoparticles to the vascular wall. Sci Adv. 2021:7. https://doi.org/10.1126/sciadv.abe0143.

  112. Nkansah MK, Thakral D, Shapiro EM. Magnetic poly(lactide- co -glycolide) and cellulose particles for MRI-based cell tracking. Magn Reson Med. 2011;65:1776–85. https://doi.org/10.1002/mrm.22765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Perez-Balderas F, van Kasteren SI, Aljabali AAA, Wals K, Serres S, Jefferson A, et al. Covalent assembly of nanoparticles as a peptidase-degradable platform for molecular MRI. Nat Commun. 2017;8:14254. https://doi.org/10.1038/ncomms14254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wijesurendra RS, Jefferson A, Choudhury RP. Target: ligand interactions of the vascular endothelium. Implications for molecular imaging in inflammation. Integr Biol. 2010;2:467–82. https://doi.org/10.1039/c0ib00022a.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola R. Sibson .

Editor information

Editors and Affiliations

Ethics declarations

Funding: The authors of this chapter were funded by the Medical Research Council (MR/V005995/1), Cancer Research UK (C5255/A15935), the CRUK & EPSRC Cancer Imaging Centre in Oxford (C5255/A16466), and a Radcliffe Scholarship from the University College, Oxford, UK.

Conflict of Interest: The authors have no conflicts of interest to declare.

Ethical approval: All animal experiments were approved by the University of Oxford Clinical Medicine Ethics Review Committee and the UK Home Office (Animals [Scientific Procedures] Act 1986) and conducted in accordance with the University of Oxford Policy on the Use of Animals in Scientific Research, the ARRIVE Guidelines, and Guidelines for the Welfare and Use of Animals in Cancer Research (Workman et al. Guidelines for the welfare and use of animals in cancer research. British Journal of Cancer 2010; 1555–1557).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johanssen, V.A., Zarghami, N., Sibson, N.R. (2023). Magnetic Resonance Imaging of Neuroinflammation. In: Man, F., Cleary, S.J. (eds) Imaging Inflammation. Progress in Inflammation Research, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-031-23661-7_3

Download citation

Publish with us

Policies and ethics