Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Imaging Inflammation by Intravital Microscopy

  • Chapter
  • First Online:
Imaging Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 91))

  • 573 Accesses

Abstract

The ability to visualise the biological processes involved in initiation and maintenance of inflammation is critical to our understanding of their context in pathophysiology. Intravital microscopy allows us to directly investigate leukocyte dynamics in vivo. Dynamic processes and effector functions can now synergistically be observed in live animal models and through indirect mechanistic experiments for a more complete picture. Thanks to intravital imaging, we now hold a detailed understanding of the leukocyte adhesion cascade, as well as mediators of effector cell migration and interactions with external pathogens. The combination of intravital microscopy and appropriate reporter models also allows the study of processes, such as sterile inflammation and aberrant modes of leukocyte trafficking, maintaining important tissue- and cell-specific detail. Importantly, intravital imaging also has the power to reveal behaviour, forcing us to refine long-held paradigms. From intravascular leukocyte functions to reverse transmigration and behaviour in non-blood fluids, intravital microscopy keeps pushing the boundaries of our understanding of inflammation. In this chapter, we give examples illustrating the role of intravital microscopy in describing canonical immunological processes, challenging established ideas and gathering insights into new paradigms by direct observation. We also discuss some of the technical challenges encountered during intravital imaging and how they are being overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Metchnikoff E. Lectures on the comparative pathology of inflammation delivered at the Pasteur Institute in 1891. Trench; 1893.

    Google Scholar 

  2. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science (80- ). 2007;317:666–70. https://doi.org/10.1126/science.1142883.

    Article  CAS  Google Scholar 

  3. Devi S, Li A, Westhorpe CLV, Lo CY, Abeynaike LD, Snelgrove SL, et al. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med. 2013;19:107–12. https://doi.org/10.1038/nm.3024.

    Article  CAS  PubMed  Google Scholar 

  4. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, et al. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell. 2013;153:362–75. https://doi.org/10.1016/j.cell.2013.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. Jenkins M, editor. PLoS Biol. 2005;3:e113. https://doi.org/10.1371/journal.pbio.0030113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science (80- ). 2017;358:111–6. https://doi.org/10.1126/science.aam9690.

    Article  CAS  Google Scholar 

  7. Owen-Woods C, Joulia R, Barkaway A, Rolas L, Ma B, Nottebaum AF, et al. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J Clin Invest. 2020;130:2301–18. https://doi.org/10.1172/JCI133661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lim K, Hyun Y-M, Lambert-Emo K, Capece T, Bae S, Miller R, et al. Neutrophil trails guide influenza-specific CD8 + T cells in the airways. Science (80- ). 2015;349:aaa4352. https://doi.org/10.1126/science.aaa4352.

    Article  CAS  Google Scholar 

  9. Barkaway A, Rolas L, Joulia R, Bodkin J, Lenn T, Owen-Woods C, et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity. 2021;54:1494–510.e7. https://doi.org/10.1016/j.immuni.2021.04.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hor JL, Germain RN. Intravital and high-content multiplex imaging of the immune system. Trends Cell Biol. 2021; https://doi.org/10.1016/j.tcb.2021.11.007.

  11. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41:694–707. https://doi.org/10.1016/j.immuni.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  12. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell. 1993;74:541–54. https://doi.org/10.1016/0092-8674(93)80055-J.

    Article  CAS  PubMed  Google Scholar 

  13. Ley K, Bullard DC, Arbonés ML, Bosse R, Vestweber D, Tedder TF, et al. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med. 1995;181:669–75. https://doi.org/10.1084/jem.181.2.669.

    Article  CAS  PubMed  Google Scholar 

  14. Kunkel EJ, Ley K. Distinct phenotype of E-selectin–deficient mice. Circ Res. 1996;79:1196–204. https://doi.org/10.1161/01.RES.79.6.1196.

    Article  CAS  PubMed  Google Scholar 

  15. Smith ML, Olson TS, Klaus L. CXCR2- and E-selectin–induced neutrophil arrest during inflammation in vivo. J Exp Med. 2004;200:935–9. https://doi.org/10.1084/jem.20040424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zarbock A, Lowell CA, Ley K. Spleen tyrosine kinase Syk is necessary for E-selectin-induced αLβ2 integrin-mediated rolling on intercellular adhesion molecule-1. Immunity. 2007;26:773–83. https://doi.org/10.1016/j.immuni.2007.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo B-H, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–47. https://doi.org/10.1146/annurev.immunol.25.022106.141618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med. 2006;203:2569–75. https://doi.org/10.1084/jem.20060925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petrovich E, Feigelson SW, Stoler-Barak L, Hatzav M, Solomon A, Bar-Shai A, et al. Lung ICAM-1 and ICAM-2 support spontaneous intravascular effector lymphocyte entrapment but are not required for neutrophil entrapment or emigration inside endotoxin-inflamed lungs. FASEB J. 2016;30:1767–78. https://doi.org/10.1096/fj.201500046.

    Article  CAS  PubMed  Google Scholar 

  20. Conrad C, Yildiz D, Cleary SJ, Margraf A, Cook L, Schlomann U, et al. ADAM8 signaling drives neutrophil migration and ARDS severity. JCI. Insight. 2022:7. https://doi.org/10.1172/jci.insight.149870.

  21. Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008;453:51–5. https://doi.org/10.1038/nature06887.

    Article  CAS  PubMed  Google Scholar 

  22. Yipp BG, Kim JH, Lima R, Zbytnuik LD, Petri B, Swanlund N, et al. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci Immunol. 2017:2. https://doi.org/10.1126/sciimmunol.aam8929.

  23. Halin C, Scimone ML, Bonasio R, Gauguet J-M, Mempel TR, Quackenbush E, et al. The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell–expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood. 2005;106:1314–22. https://doi.org/10.1182/blood-2004-09-3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Asrir A, Tardiveau C, Coudert J, Laffont R, Blanchard L, Bellard E, et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell. 2022;40:318–34.e9. https://doi.org/10.1016/j.ccell.2022.01.002.

    Article  CAS  PubMed  Google Scholar 

  25. Woodfin A, Voisin M-B, Beyrau M, Colom B, Caille D, Diapouli F-M, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12:761–9. https://doi.org/10.1038/ni.2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mathias JR, Perrin BJ, Liu T-X, Kanki J, Look AT, Huttenlocher A. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol. 2006;80:1281–8. https://doi.org/10.1189/jlb.0506346.

    Article  CAS  PubMed  Google Scholar 

  27. Elks PM, van Eeden FJ, Dixon G, Wang X, Reyes-Aldasoro CC, Ingham PW, et al. Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood. 2011;118:712–22. https://doi.org/10.1182/blood-2010-12-324186.

    Article  CAS  PubMed  Google Scholar 

  28. Yoo SK, Huttenlocher A. Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. J Leukoc Biol. 2011;89:661–7. https://doi.org/10.1189/jlb.1010567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sullivan DP, Watson RL, Muller WA. 4D intravital microscopy uncovers critical strain differences for the roles of PECAM and CD99 in leukocyte diapedesis. Am J Physiol Circ Physiol. 2016;311:H621–32. https://doi.org/10.1152/ajpheart.00289.2016.

    Article  Google Scholar 

  30. Reglero-Real N, Pérez-Gutiérrez L, Yoshimura A, Rolas L, Garrido-Mesa J, Barkaway A, et al. Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity. 2021;54:1989–2004.e9. https://doi.org/10.1016/j.immuni.2021.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finsterbusch M, Hall P, Li A, Devi S, Westhorpe CLV, Kitching AR, et al. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc Natl Acad Sci. 2016;113:E5172–81. https://doi.org/10.1073/pnas.1606253113.

    Article  CAS  PubMed  Google Scholar 

  32. Wang B, Zinselmeyer BH, Runnels HA, LaBranche TP, Morton PA, Kreisel D, et al. In vivo imaging implicates CCR2+ monocytes as regulators of neutrophil recruitment during arthritis. Cell Immunol. 2012;278:103–12. https://doi.org/10.1016/j.cellimm.2012.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maus UA, Waelsch K, Kuziel WA, Delbeck T, Mack M, Blackwell TS, et al. Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation: role of the CCL2-CCR2 Axis. J Immunol. 2003;170:3273–8. https://doi.org/10.4049/jimmunol.170.6.3273.

    Article  CAS  PubMed  Google Scholar 

  34. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, et al. Neutrophils scan for activated platelets to initiate inflammation. Science (80- ). 2014;346:1234–8. https://doi.org/10.1126/science.1256478.

    Article  CAS  Google Scholar 

  35. Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell. 2016;165:668–78. https://doi.org/10.1016/j.cell.2016.03.009.

    Article  CAS  PubMed  Google Scholar 

  36. Zindel J, Peiseler M, Hossain M, Deppermann C, Lee WY, Haenni B, et al. Primordial GATA6 macrophages function as extravascular platelets in sterile injury. Science (80- ). 2021:371. https://doi.org/10.1126/science.abe0595.

  37. Zhang N, Czepielewski RS, Jarjour NN, Erlich EC, Esaulova E, Saunders BT, et al. Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. J Exp Med. 2019;216:1291–300. https://doi.org/10.1084/jem.20182024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uderhardt S, Martins AJ, Tsang JS, Lämmermann T, Germain RN. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell. 2019;177:541–55.e17. https://doi.org/10.1016/j.cell.2019.02.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ng LG, Qin JS, Roediger B, Wang Y, Jain R, Cavanagh LL, et al. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J Invest Dermatol. 2011;131:2058–68. https://doi.org/10.1038/jid.2011.179.

    Article  CAS  PubMed  Google Scholar 

  40. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA, et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 2013;498:371–5. https://doi.org/10.1038/nature12175.

    Article  CAS  PubMed  Google Scholar 

  41. Poplimont H, Georgantzoglou A, Boulch M, Walker HA, Coombs C, Papaleonidopoulou F, et al. Neutrophil swarming in damaged tissue is orchestrated by connexins and cooperative calcium alarm signals. Curr Biol. 2020;30:2761–76.e7. https://doi.org/10.1016/j.cub.2020.05.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kienle K, Glaser KM, Eickhoff S, Mihlan M, Knöpper K, Reátegui E, et al. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science (80- ). 2021:372. https://doi.org/10.1126/science.abe7729.

  43. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CCM, et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science (80- ). 2010;330:362–6. https://doi.org/10.1126/science.1195491.

    Article  CAS  Google Scholar 

  44. Slaba I, Wang J, Kolaczkowska E, McDonald B, Lee W-Y, Kubes P. Imaging the dynamic platelet-neutrophil response in sterile liver injury and repair in mice. Hepatology. 2015;62:1593–605. https://doi.org/10.1002/hep.28003.

    Article  CAS  PubMed  Google Scholar 

  45. Cleary SJ, Kwaan N, Tian JJ, Calabrese DR, Mallavia B, Magnen M, et al. Complement activation on endothelium initiates antibody-mediated acute lung injury. J Clin Invest. 2020;130:5909–23. https://doi.org/10.1172/JCI138136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Giovanni M, Tam H, Valet C, Xu Y, Looney MR, Cyster JG. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell. 2022;185:815–30.e19. https://doi.org/10.1016/j.cell.2022.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thanabalasuriar A, Neupane AS, Wang J, Krummel MF, Kubes P. iNKT cell emigration out of the lung vasculature requires neutrophils and monocyte-derived dendritic cells in inflammation. Cell Rep. 2016;16:3260–72. https://doi.org/10.1016/j.celrep.2016.07.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods. 2011;8:91–6. https://doi.org/10.1038/nmeth.1543.

    Article  CAS  PubMed  Google Scholar 

  49. Headley MB, Bins A, Nip A, Roberts EW, Looney MR, Gerard A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature. 2016;531:513–7. https://doi.org/10.1038/nature16985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neupane AS, Willson M, Chojnacki AK, Silva VE, Castanheira F, Morehouse C, Carestia A, et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell. 2020;183:110–25.e11. https://doi.org/10.1016/j.cell.2020.08.020.

    Article  CAS  PubMed  Google Scholar 

  51. Secklehner J, De Filippo K, Mackey JBG, Vuononvirta J, Raffo Iraolagoitia XL, McFarlane AJ, et al. Pulmonary natural killer cells control neutrophil intravascular motility and response to acute inflammation. bioRxiv. 2019:680611. https://doi.org/10.1101/680611.

  52. Duarte D, Hawkins ED, Akinduro O, Ang H, De Filippo K, Kong IY, et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell. 2018;22:64–77.e6. https://doi.org/10.1016/j.stem.2017.11.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deniset JF, Surewaard BG, Lee W-Y, Kubes P. Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae. J Exp Med. 2017;214:1333–50. https://doi.org/10.1084/jem.20161621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Juzenaite G, Secklehner J, Vuononvirta J, Helbawi Y, Mackey JBG, Dean C, et al. Lung marginated and splenic murine resident neutrophils constitute pioneers in tissue-defense during systemic E. coli challenge. Front Immunol. 2021:12. https://doi.org/10.3389/fimmu.2021.597595.

  55. Kolaczkowska E, Jenne CN, Surewaard BGJ, Thanabalasuriar A, Lee W-Y, Sanz M-J, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun. 2015;6:6673. https://doi.org/10.1038/ncomms7673.

    Article  CAS  PubMed  Google Scholar 

  56. Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 2018:3. https://doi.org/10.1172/jci.insight.98178.

  57. McDonald B, Davis RP, Kim S-J, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129:1357–67. https://doi.org/10.1182/blood-2016-09-741298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carminita E, Crescence L, Brouilly N, Altié A, Panicot-Dubois L, Dubois C. DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proc Natl Acad Sci. 2021:118. https://doi.org/10.1073/pnas.2100561118.

  59. Ueki H, Wang I-H, Zhao D, Gunzer M, Kawaoka Y. Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nat Protoc. 2020;15:1041–65. https://doi.org/10.1038/s41596-019-0275-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guidotti LG, Inverso D, Sironi L, Di Lucia P, Fioravanti J, Ganzer L, et al. Immunosurveillance of the liver by intravascular effector CD8 + T cells. Cell. 2015;161:486–500. https://doi.org/10.1016/j.cell.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

  61. De Niz M, Meehan GR, Brancucci NMB, Marti M, Rotureau B, Figueiredo LM, et al. Intravital imaging of host–parasite interactions in skin and adipose tissues. Cell Microbiol. 2019;21:e13023. https://doi.org/10.1111/cmi.13023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science (80- ). 2008;321:970–4. https://doi.org/10.1126/science.1159194.

    Article  CAS  Google Scholar 

  63. Kilarski WW, Martin C, Pisano M, Bain O, Babayan SA, Swartz MA. Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic vessels. Nat Commun. 2019;10:2895. https://doi.org/10.1038/s41467-019-10675-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Furlong-Silva J, Cross SD, Marriott AE, Pionnier N, Archer J, Steven A, et al. Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor–mediated lymphangiogenesis. J Clin Invest. 2021:131. https://doi.org/10.1172/JCI140853.

  65. Karadjian G, Fercoq F, Pionnier N, Vallarino-Lhermitte N, Lefoulon E, Nieguitsila A, et al. Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung. Brehm K, editor. PLoS Negl Trop Dis. 2017;11:e0005596. https://doi.org/10.1371/journal.pntd.0005596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boulch M, Grandjean CL, Cazaux M, Bousso P. Tumor immunosurveillance and immunotherapies: a fresh look from intravital imaging. Trends Immunol. 2019;40:1022–34. https://doi.org/10.1016/j.it.2019.09.002.

    Article  CAS  PubMed  Google Scholar 

  67. Sody S, Uddin M, Grüneboom A, Görgens A, Giebel B, Gunzer M, et al. Distinct spatio-temporal dynamics of tumor-associated neutrophils in small tumor lesions. Front Immunol. 2019:10. https://doi.org/10.3389/fimmu.2019.01419.

  68. Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52:856–71.e8. https://doi.org/10.1016/j.immuni.2020.03.001.

    Article  CAS  PubMed  Google Scholar 

  69. Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P, et al. Neutrophils promote liver metastasis via mac-1–mediated interactions with circulating tumor cells. Cancer Res. 2012;72:3919–27. https://doi.org/10.1158/0008-5472.CAN-11-2393.

    Article  CAS  PubMed  Google Scholar 

  70. McDonald B, Spicer J, Giannais B, Fallavollita L, Brodt P, Ferri LE. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer. 2009;125:1298–305. https://doi.org/10.1002/ijc.24409.

    Article  CAS  PubMed  Google Scholar 

  71. Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis-promoting effects. JCI Insight. 2019:4. https://doi.org/10.1172/jci.insight.128008.

  72. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, Jorns J, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med. 2016;8:361ra138. https://doi.org/10.1126/scitranslmed.aag1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Entenberg D, Voiculescu S, Guo P, Borriello L, Wang Y, Karagiannis GS, et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods. 2018;15:73–80. https://doi.org/10.1038/nmeth.4511.

    Article  CAS  PubMed  Google Scholar 

  74. Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun. 2022;13:626. https://doi.org/10.1038/s41467-022-28076-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Naumenko V, Nikitin A, Garanina A, Melnikov P, Vodopyanov S, Kapitanova K, et al. Neutrophil-mediated transport is crucial for delivery of short-circulating magnetic nanoparticles to tumors. Acta Biomater. 2020;104:176–87. https://doi.org/10.1016/j.actbio.2020.01.011.

    Article  CAS  PubMed  Google Scholar 

  76. Chu D, Dong X, Zhao Q, Gu J, Wang Z. Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration. Adv Mater. 2017;29:1701021. https://doi.org/10.1002/adma.201701021.

    Article  CAS  Google Scholar 

  77. Lau D, Garçon F, Chandra A, Lechermann LM, Aloj L, Chilvers ER, et al. Intravital imaging of adoptive T-cell morphology, mobility and trafficking following immune checkpoint inhibition in a mouse melanoma model. Front Immunol. 2020;11:1514. https://doi.org/10.3389/fimmu.2020.01514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang D, Chen X, Zeng X, Lao L, Li J, Xing Y, et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer. Nat Immunol. 2021;22:865–79. https://doi.org/10.1038/s41590-021-00939-9.

    Article  CAS  PubMed  Google Scholar 

  79. Breart B, Lemaître F, Celli S, Bousso P. Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest. 2008;118:1390–7. https://doi.org/10.1172/JCI34388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cazaux M, Grandjean CL, Lemaître F, Garcia Z, Beck RJ, Milo I, et al. Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J Exp Med. 2019;216:1038–49. https://doi.org/10.1084/jem.20182375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Giampetraglia M, Weigelin B. Recent advances in intravital microscopy for preclinical research. Curr Opin Chem Biol. 2021;63:200–8. https://doi.org/10.1016/j.cbpa.2021.05.010.

    Article  CAS  PubMed  Google Scholar 

  82. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18:100–6. https://doi.org/10.1038/s41592-020-01018-x.

    Article  CAS  PubMed  Google Scholar 

  83. Stoltzfus CR, Filipek J, Gern BH, Olin BE, Leal JM, Wu Y, et al. CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep. 2020;31:107523. https://doi.org/10.1016/j.celrep.2020.107523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crainiciuc G, Palomino-Segura M, Molina-Moreno M, Sicilia J, Aragones DG, Li JLY, et al. Behavioural immune landscapes of inflammation. Nature. 2022;601:415–21. https://doi.org/10.1038/s41586-021-04263-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burkovskiy I, Lehmann C, Jiang C, Zhou J. Utilization of 3D printing for an intravital microscopy platform to study the intestinal microcirculation. J Microsc. 2016;264:224–6. https://doi.org/10.1111/jmi.12437.

    Article  CAS  PubMed  Google Scholar 

  86. Valet C, Magnen M, Qiu L, Cleary SJ, Wang KM, Ranucci S, et al. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J Clin Invest. 2022:132. https://doi.org/10.1172/JCI153920.

  87. Jacquemin G, Benavente-Diaz M, Djaber S, Bore A, Dangles-Marie V, Surdez D, et al. Longitudinal high-resolution imaging through a flexible intravital imaging window. Sci Adv. 2021;7:eabg7663. https://doi.org/10.1126/sciadv.abg7663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maiorino L, Shevik M, Adrover JM, Han X, Georgas E, Wilkinson JE, et al. Longitudinal intravital imaging through clear silicone windows. J Vis Exp. 2022:e62757. https://doi.org/10.3791/62757.

  89. Turner-Stokes T, Garcia Diaz A, Pinheiro D, Prendecki M, McAdoo SP, Roufosse C, et al. Live imaging of monocyte subsets in immune complex-mediated glomerulonephritis reveals distinct phenotypes and effector functions. J Am Soc Nephrol. 2020;31:2523–42. https://doi.org/10.1681/ASN.2019121326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fisher DT, Muhitch JB, Kim M, Doyen KC, Bogner PN, Evans SS, et al. Intraoperative intravital microscopy permits the study of human tumour vessels. Nat Commun. 2016;7:10684. https://doi.org/10.1038/ncomms10684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gabriel EM, Kim M, Fisher DT, Mangum C, Attwood K, Ji W, et al. A pilot trial of intravital microscopy in the study of the tumor vasculature of patients with peritoneal carcinomatosis. Sci Rep. 2021;11:4946. https://doi.org/10.1038/s41598-021-84430-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MDD, FF and LMC are grateful for the help from Judith Secklehner and John Mackey along with the light microscopy (FILM and BAIR) and animal units (CBS and BSU) at Imperial College London and the CRUK Beatson Institute with the imaging examples used in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo M. Carlin .

Editor information

Editors and Affiliations

Ethics declarations

Funding: MDD, FF and LMC have received funding from Cancer Research UK (CRUK C596/A17196, A31287 and A23983) and Breast Cancer Now (2019DecPR1424).

Conflict of Interest: The authors have no conflicts of interest to declare.

Ethical approval: All experiments involving mice were performed in accordance with the UK Animal (Scientific Procedures) Act 1986, approved by the local animal welfare (AWERB) committees and conducted under UK Home Office licences.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Donatis, M., Fercoq, F., Carlin, L.M. (2023). Imaging Inflammation by Intravital Microscopy. In: Man, F., Cleary, S.J. (eds) Imaging Inflammation. Progress in Inflammation Research, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-031-23661-7_7

Download citation

Publish with us

Policies and ethics