Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Object Centric Point Sets Feature Learning with Matrix Decomposition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 Workshops (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13848))

Included in the following conference series:

  • 322 Accesses

Abstract

A representation matching the invariance/equivariance characteristics must be learnt to rebuild a morphable 3D model from a single picture input. However, present approaches for dealing with 3D point clouds depend heavily on a huge quantity of labeled data, while unsupervised methods need a large number of parameters. This is not productive. In the field of 3D morphable model building, the encoding of input photos has received minimal consideration. In this paper, we design a unique framework that strictly adheres to the permutation invariance of input points. Matrix Decomposition-based Invariant (MDI) learning is a system that offers a unified architecture for unsupervised invariant point set feature learning. The key concept behind our technique is to derive invariance and equivariance qualities for a point set via a simple but effective matrix decomposition. MDI is incredibly efficient and effective while being basic. Empirically, its performance is comparable to or even surpasses the state of the art. In addition, we present a framework for manipulating avatars based on CLIP and TBGAN, and the results indicate that our learnt features may help the model achieve better manipulation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633. IEEE (2011)

    Google Scholar 

  2. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711. IEEE (2010)

    Google Scholar 

  3. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. In: Computer Graphics Forum, vol. 22, pp. 223–232. Wiley Online Library (2003)

    Google Scholar 

  4. Creager, E., Jacobsen, J., Zemel, R.S.: Exchanging lessons between algorithmic fairness and domain generalization. CoRR abs/2010.07249 (2020). https://arxiv.org/abs/2010.07249

  5. Deprelle, T., Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: Learning elementary structures for 3D shape generation and matching. arXiv preprint arXiv:1908.04725 (2019)

  6. Duchi, J., Glynn, P., Namkoong, H.: Statistics of robust optimization: a generalized empirical likelihood approach. arXiv preprint arXiv:1610.03425 (2016)

  7. Fang, Y., et al.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2015)

    Google Scholar 

  8. Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8649–8658 (2021)

    Google Scholar 

  9. Gecer, B., et al.: Synthesizing coupled 3D face modalities by trunk-branch generative adversarial networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 415–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_25

    Chapter  Google Scholar 

  10. Geng, Z., Guo, M.H., Chen, H., Li, X., Wei, K., Lin, Z.: Is attention better than matrix decomposition? arXiv preprint arXiv:2109.04553 (2021)

  11. Guan, N., Tao, D., Luo, Z., Shawe-Taylor, J.: MahNMF: Manhattan non-negative matrix factorization. arXiv preprint arXiv:1207.3438 (2012)

  12. Guo, K., Zou, D., Chen, X.: 3D mesh labeling via deep convolutional neural networks. ACM Trans. Graph. (TOG) 35(1), 1–12 (2015)

    Article  Google Scholar 

  13. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  14. Li, N., Raza, M.A., Hu, W., Sun, Z., Fisher, R.: Object-centric representation learning with generative spatial-temporal factorization. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  15. Li, Y., Pirk, S., Su, H., Qi, C.R., Guibas, L.J.: FPNN: field probing neural networks for 3D data. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  16. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  17. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  19. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  20. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE (2009)

    Google Scholar 

  21. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3384–3391. IEEE (2008)

    Google Scholar 

  22. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  23. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)

    Google Scholar 

  24. Sun, W., Tagliasacchi, A., Deng, B., Sabour, S., Yazdani, S., Hinton, G., Yi, K.M.: Canonical capsules: self-supervised capsules in canonical pose. In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  25. Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection. In: Robotics: Science and Systems, Rome, Italy, vol. 1, pp. 10–15 (2015)

    Google Scholar 

  26. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  27. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340 (2018)

    Google Scholar 

  28. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3D point capsule networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1009–1018 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Yang, W., Liu, Z., Chen, Q., Ni, J., Jia, Z. (2023). Object Centric Point Sets Feature Learning with Matrix Decomposition. In: Zheng, Y., Keleş, H.Y., Koniusz, P. (eds) Computer Vision – ACCV 2022 Workshops. ACCV 2022. Lecture Notes in Computer Science, vol 13848. Springer, Cham. https://doi.org/10.1007/978-3-031-27066-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27066-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27065-9

  • Online ISBN: 978-3-031-27066-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics