Abstract
This chapter presents a discussion regarding the area of perceptual analysis in Computer Graphics (CG) characters. This discussion is focused on presenting one challenge area in Digital Entertainment. Many issues in the area of perception analysis have been researched in last years, in particular with respect to the theory of Uncanny Valley (UV) proposed by Masahiro Mori in 1970. Indeed, it is known that realistic characters from movies and games can cause strangeness and involuntary feelings in viewers, what can affect the acceptance of audience in games and movies. This chapter aims to present concepts and discuss issues in this area. For this, we present two case studies: i) The first one is related to perceptual analysis, in which we use characters in groups with different skin colors and different levels of realism; ii) The second one is related to computational analysis and aims to estimate the perceived comfort by human beings automatically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Araujo, V., Dalmoro, B., Musse, S.R.: Analysis of charisma, comfort and realism in cg characters from a gender perspective. Vis. Comput. 37, 1–14 (2021)
Araujo, V., Melgare, J., Dalmoro, B., Musse, S.R.: Is the perceived comfort with cg characters increasing with their novelty. IEEE Comput. Graph. Appl. 1 (2021). https://doi.org/10.1109/MCG.2021.3090198
Araujo, V., Melgare, J., Dalmoro, B., Musse, S.R.: Is the perceived comfort with CG characters increasing with their novelty. IEEE Comput. Graph. Appl. 42, 32–46 (2021)
Awamleh, R., Gardner, W.L.: Perceptions of leader charisma and effectiveness: the effects of vision content, delivery, and organizational performance. Leadersh. Q. 10(3), 345–373 (1999)
Birkhoff, G.D.: Quelques éléments mathématiques de l’art. In: Atti del Congresso Internazionale dei Matematici, pp. 315–333. Bologna, September 1929
Birkhoff, G.D.: Une théorie quantitative de l’esthétique. Bulletin de la Société française de Philosophia (1931)
Birkhoff, G.D.: Aesthetic measure. Bull. Am. Math. Soc. 40, 7–10 (1933)
Bornemann, B., Winkielman, P., Van der Meer, E.: Can you feel what you do not see? using internal feedback to detect briefly presented emotional stimuli. Int. J. Psychophysiol. 85(1), 116–124 (2012)
Chaminade, T., Hodgins, J., Kawato, M.: Anthropomorphism influences perception of computer-animated characters’ actions. Soc. Cogn. Affect. Neurosci. 2(3), 206–216 (2007)
Dal Molin, G.P., Nomura, F.M., Dalmoro, B.M., de A. Araújo, V.F., Musse, S.R.: Can we estimate the perceived comfort of virtual human faces using visual cues? In: 2021 IEEE 15th International Conference on Semantic Computing (ICSC), pp. 366–369 (2021). https://doi.org/10.1109/ICSC50631.2021.00085
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)
Flach, L.M., de Moura, R.H., Musse, S.R., Dill, V., Pinho, M.S., Lykawka, C.: Evaluation of the uncanny valley in cg characters. In: Proceedings of the Brazilian Symposium on Computer Games and Digital Entertainmen (SBGames)(Brasiìlia), pp. 108–116 (2012)
Goethals, G.R., Allison, S.T.: Kings and charisma, Lincoln and leadership: an evolutionary perspective. In: Goethals, G.R., Allison, S.T., Kramer, R.M., Messick, D.M. (eds.) Conceptions of Leadership, pp. 111–124. Jepson Studies in Leadership. Palgrave Macmillan, New York (2014). https://doi.org/10.1057/9781137472038_7
Goldenberg, A., Weisz, E., Sweeny, T.D., Cikara, M., Gross, J.J.: The crowd-emotion-amplification effect. Psychol. Sci. 32(3), 437–450 (2021)
Hoenig, F.: Defining computational aesthetics. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) 1st Eurographics Workshop on Computational Aesthetics in Graphics, Visualization, and Imaging, CAe 2005, Girona, Spain, 18–20 May 2005, Proceedings, pp. 13–18. Eurographics Association (2005). https://doi.org/10.2312/COMPAESTH/COMPAESTH05/013-018
Howse, J.: OpenCV Computer Vision with Python. Packt Publishing Ltd., Birmingham (2013)
Hyde, J., Carter, E.J., Kiesler, S., Hodgins, J.K.: Evaluating animated characters: facial motion magnitude influences personality perceptions. ACM Trans. Appl. Percept. (TAP) 13(2), 8 (2016)
Jimenez, J., et al.: Separable subsurface scattering. In: Computer Graphics Forum, vol. 34, pp. 188–197. Wiley Online Library (2015)
Kätsyri, J., Förger, K., Mäkäräinen, M., Takala, T.: A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Front. Psychol. 6, 390 (2015)
Kätsyri, J., Mäkäräinen, M., Takala, T.: Testing the uncanny valley hypothesis in semirealistic computer-animated film characters: an empirical evaluation of natural film stimuli. Int. J. Hum. Comput. Stud. 97, 149–161 (2017)
Kim, T., et al.: Countering racial bias in computer graphics research. arXiv preprint arXiv:2103.15163 (2021)
Lamer, S.A., Sweeny, T.D., Dyer, M.L., Weisbuch, M.: Rapid visual perception of interracial crowds: racial category learning from emotional segregation. J. Exp. Psychol. Gen. 147(5), 683 (2018)
Li, W., Zinbarg, R.E., Boehm, S.G., Paller, K.A.: Neural and behavioral evidence for affective priming from unconsciously perceived emotional facial expressions and the influence of trait anxiety. J. Cogn. Neurosci. 20(1), 95–107 (2008)
Liu, L., Liu, B., Huang, H., Bovik, A.C.: No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 29(8), 856–863 (2014)
Ma, L., Deng, Z.: Real-time facial expression transformation for monocular RGB video. In: Computer Graphics Forum. vol. 38, pp. 470–481. Wiley Online Library (2019)
MacDorman, K.F.: Mortality salience and the uncanny valley. In: 5th IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 399–405. IEEE (2005)
MacDorman, K.F., Chattopadhyay, D.: Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition 146, 190–205 (2016)
Mori, M.: Bukimi no tani [the uncanny valley]. Energy 7, 33–35 (1970)
Mustafa, M., Magnor, M.: EEG based analysis of the perception of computer-generated faces. In: Proceedings of the 13th European Conference on Visual Media Production (CVMP 2016), p. 4. ACM (2016)
Paleari, M., Lisetti, C.: Psychologically grounded avatars expressions. In: First Workshop on Emotion and Computing at KI (2006)
Rosenthal-von der Pütten, A.M., Krämer, N.C.: Individuals’ evaluations of and attitudes towards potentially uncanny robots. Int. J. Soc. Robot. 7(5), 799–824 (2015)
Queiroz, R.B., Musse, S.R., Badler, N.I.: Investigating macroexpressions and microexpressions in computer graphics animated faces. PRESENCE Teleoperators Virtual Environ. 23(2), 191–208 (2014)
Riggio, R.E.: Charisma. Encycl. Ment. Health 1, 387–396 (1998)
Rosebrock, A.: Facial landmarks with dlib opencv and python-pyimagesearch. PyImageSearch (2017)
Ruhland, K., Prasad, M., McDonnell, R.: Data-driven approach to synthesizing facial animation using motion capture. IEEE Comput. Graph. Appl. 37(4), 30–41 (2017)
Saneyoshi, A., Okubo, M., Suzuki, H., Oyama, T., Laeng, B.: The other-race effect in the uncanny valley. Int. J. Hum. Comput. Stud. 166, 102871 (2022)
Schwind, V.: Implications of the uncanny valley of avatars and virtual characters for human-computer interaction. (dissertation - university of stuttgart) (2018). http://dx.doi.org/10/gd6b7h
Schwind, V., Wolf, K., Henze, N.: Avoiding the uncanny valley in virtual character design. Interactions 25(5), 45–49 (2018)
Shen, X.B., Wu, Q., Fu, X.l.: Effects of the duration of expressions on the recognition of microexpressions. J. Zhejiang Univ. Sci. B 13(3), 221–230 (2012)
Sponring, J.: The entropy of scale-space. In: Proceedings of 13th International Conference on Pattern Recognition, vol. 1, pp. 900–904. IEEE (1996)
Tinwell, A., Grimshaw, M., Williams, A.: The uncanny wall. Int. J. Arts Technol. 4(3), 326–341 (2011)
Viola, P., Jones, M., et al.: Rapid object detection using a boosted cascade of simple features. CVPR (1) 1(511–518), 3 (2001)
Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014)
West, P.T., Armstrong, J.: Charisma-studying its elusive nature. NASSP Bull. 64(438), 70–77 (1980)
Zell, E., et al.: To stylize or not to stylize?: The effect of shape and material stylization on the perception of computer-generated faces. ACM Trans. Graph. (TOG) 34(6), 184 (2015)
Zell, E., Zibrek, K., McDonnell, R.: Perception of virtual characters. In: ACM SIGGRAPH 2019 Courses, pp. 1–17. SIGGRAPH (2019)
Žunić, J., Hirota, K., Rosin, P.L.: A hu moment invariant as a shape circularity measure. Pattern Recogn. 43(1), 47–57 (2010)
Acknowledgements
The authors would like to thank CNPq and CAPES for partially funding this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Musse, S.R., Molin, G.P.D., Araujo, V.F.d.A., Schaffer, D.H.M., Brandelli, A.C. (2023). Perceptual Analysis of Computer Graphics Characters in Digital Entertainment. In: Santos, R.P.d., Hounsell, M.d.S. (eds) Grand Research Challenges in Games and Entertainment Computing in Brazil - GranDGamesBR 2020–2030. GranDGamesBR GranDGamesBR 2020 2021. Communications in Computer and Information Science, vol 1702. Springer, Cham. https://doi.org/10.1007/978-3-031-27639-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-27639-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27638-5
Online ISBN: 978-3-031-27639-2
eBook Packages: Computer ScienceComputer Science (R0)