Abstract
The use of MR images in medical image analysis from different centers in clinical applications and medical research has grown in popularity. However, challenges arise due to inherent variability between centers, leading to domain shift issues that reduce the reliability and robustness of the analysis results. Furthermore, the lack of suitable tools for analyzing domain shift hampers the progress of developing and validating domain adaptation and harmonization techniques. Utilizing pre-trained deep models as feature extractors, we introduce a novel framework called Deep Domain Shift analyzer for MRI (DeepDSMRI), designed explicitly to comprehend the extent of domain shift in MRI datasets. DeepDSMRI provides adequate insights into the existence of domain shift for diverse MRI modalities, including structural, functional, and diffusion-weighted images. The proposed framework incorporates visualization tools (e.g., t-SNE and UMAP) to illustrate grouping similar data and isolating dissimilar data into distinct clusters. Moreover, the quantitative analysis measures the classification accuracy between domains and the domain shift distance. The efficacy of the proposed DeepDSMRI is demonstrated through experimental assessments conducted on seven extensive multi-center neuroimaging databases. The source code is available at (https://github.com/rkushol/DeepDSMRI).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Botvinik-Nezer, R., Wager, T.D.: Reproducibility in Neuroimaging Analysis: Challenges and Solutions. Cognitive Neuroscience and Neuroimaging, Biological Psychiatry (2022)
Dadar, M., Duchesne, S., Group, C., et al.: Reliability assessment of tissue classification algorithms for multi-center and multi-scanner data. NeuroImage 217, 116928 (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on CVPR, pp. 248–255 (2009)
Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale (2020). arXiv preprint arXiv:2010.11929
d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: ConViT: improving vision transformers with soft convolutional inductive biases. In: International Conference on Machine Learning, pp. 2286–2296. PMLR (2021)
The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(4), 672–687 (2009)
Filippi, M., et al.: Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J. Neurol. 270(3), 1286–1299 (2023)
Gebre, R.K., et al.: Cross-scanner harmonization methods for structural MRI may need further work: a comparison study. Neuroimage 269, 119912 (2023)
Glocker, B., Robinson, R., Castro, D.C., Dou, Q., Konukoglu, E.: Machine learning with multi-site imaging data: An empirical study on the impact of scanner effects (2019). arXiv preprint arXiv:1910.04597
Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)
Guan, H., Liu, M.: DomainATM: domain adaptation toolbox for medical data analysis. NeuroImage 268, 119863 (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Jack Jr, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)
Kalra, S., et al.: The Canadian ALS neuroimaging consortium (CALSNIC)-a multicentre platform for standardized imaging and clinical studies in ALS. MedRxiv (2020)
Kushol, R., Frayne, R., Graham, S.J., Wilman, A.H., Kalra, S., Yang, Y.H.: Domain adaptation of MRI scanners as an alternative to MRI harmonization. In: Koch, L., et al. Domain Adaptation and Representation Transfer. DART 2023. LNCS, vol. 14293. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-45857-6_1
Kushol, R., Masoumzadeh, A., Huo, D., Kalra, S., Yang, Y.H.: Addformer: Alzheimer’s disease detection from structural MRI using fusion transformer. In: IEEE 19th International Symposium on Biomedical Imaging, pp. 1–5. IEEE (2022)
Kushol, R., Parnianpour, P., Wilman, A.H., Kalra, S., Yang, Y.H.: Effects of MRI scanner manufacturers in classification tasks with deep learning models. Sci. Rep. 13(1), 16791 (2023)
Kushol, R., Wilman, A.H., Kalra, S., Yang, Y.H.: DSMRI: domain shift analyzer for multi-center MRI datasets. Diagnostics 13(18), 2947 (2023)
Lee, H., Nakamura, K., Narayanan, S., Brown, R.A., Arnold, D.L., Initiative, A.D.N., et al.: Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements. Neuroimage 184, 555–565 (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)
Marek, K., et al.: The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)
McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction (2018). arXiv preprint arXiv:1802.03426
Panman, J.L., et al.: Bias introduced by multiple head coils in MRI research: an 8 channel and 32 channel coil comparison. Front. Neurosci. 13, 729 (2019)
Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset shift in machine learning. MIT Press, Cambridge (2008)
Ranjbarzadeh, R., Caputo, A., Tirkolaee, E.B., Ghoushchi, S.J., Bendechache, M.: Brain tumor segmentation of MRI images: a comprehensive review on the application of artificial intelligence tools. Comput. Biol. Med. 152, 106405 (2023)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tian, D., et al.: A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset. Neuroimage 257, 119297 (2022)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)
Wightman, R.: Pytorch image models. https://github.com/rwightman/pytorch-image-models (2019). https://doi.org/10.5281/zenodo.4414861
Xu, W., Xu, Y., Chang, T., Tu, Z.: Co-scale conv-attentional image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9981–9990 (2021)
Acknowledgments
This study has been supported by the Prime Minister Fellowship Bangladesh, Canadian Institutes of Health Research (CIHR), ALS Society of Canada, Brain Canada Foundation, and Natural Sciences and Engineering Research Council of Canada (NSERC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Appendix
Appendix
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kushol, R., Kalra, S., Yang, YH. (2024). DeepDSMRI: Deep Domain Shift Analyzer for MRI. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-66955-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66954-5
Online ISBN: 978-3-031-66955-2
eBook Packages: Computer ScienceComputer Science (R0)