Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DeepDSMRI: Deep Domain Shift Analyzer for MRI

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

The use of MR images in medical image analysis from different centers in clinical applications and medical research has grown in popularity. However, challenges arise due to inherent variability between centers, leading to domain shift issues that reduce the reliability and robustness of the analysis results. Furthermore, the lack of suitable tools for analyzing domain shift hampers the progress of developing and validating domain adaptation and harmonization techniques. Utilizing pre-trained deep models as feature extractors, we introduce a novel framework called Deep Domain Shift analyzer for MRI (DeepDSMRI), designed explicitly to comprehend the extent of domain shift in MRI datasets. DeepDSMRI provides adequate insights into the existence of domain shift for diverse MRI modalities, including structural, functional, and diffusion-weighted images. The proposed framework incorporates visualization tools (e.g., t-SNE and UMAP) to illustrate grouping similar data and isolating dissimilar data into distinct clusters. Moreover, the quantitative analysis measures the classification accuracy between domains and the domain shift distance. The efficacy of the proposed DeepDSMRI is demonstrated through experimental assessments conducted on seven extensive multi-center neuroimaging databases. The source code is available at (https://github.com/rkushol/DeepDSMRI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Botvinik-Nezer, R., Wager, T.D.: Reproducibility in Neuroimaging Analysis: Challenges and Solutions. Cognitive Neuroscience and Neuroimaging, Biological Psychiatry (2022)

    Google Scholar 

  2. Dadar, M., Duchesne, S., Group, C., et al.: Reliability assessment of tissue classification algorithms for multi-center and multi-scanner data. NeuroImage 217, 116928 (2020)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on CVPR, pp. 248–255 (2009)

    Google Scholar 

  4. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale (2020). arXiv preprint arXiv:2010.11929

  6. d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: ConViT: improving vision transformers with soft convolutional inductive biases. In: International Conference on Machine Learning, pp. 2286–2296. PMLR (2021)

    Google Scholar 

  7. The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(4), 672–687 (2009)

    Google Scholar 

  8. Filippi, M., et al.: Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J. Neurol. 270(3), 1286–1299 (2023)

    Article  Google Scholar 

  9. Gebre, R.K., et al.: Cross-scanner harmonization methods for structural MRI may need further work: a comparison study. Neuroimage 269, 119912 (2023)

    Article  Google Scholar 

  10. Glocker, B., Robinson, R., Castro, D.C., Dou, Q., Konukoglu, E.: Machine learning with multi-site imaging data: An empirical study on the impact of scanner effects (2019). arXiv preprint arXiv:1910.04597

  11. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

    Article  Google Scholar 

  12. Guan, H., Liu, M.: DomainATM: domain adaptation toolbox for medical data analysis. NeuroImage 268, 119863 (2023)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  15. Jack Jr, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Google Scholar 

  16. Kalra, S., et al.: The Canadian ALS neuroimaging consortium (CALSNIC)-a multicentre platform for standardized imaging and clinical studies in ALS. MedRxiv (2020)

    Google Scholar 

  17. Kushol, R., Frayne, R., Graham, S.J., Wilman, A.H., Kalra, S., Yang, Y.H.: Domain adaptation of MRI scanners as an alternative to MRI harmonization. In: Koch, L., et al. Domain Adaptation and Representation Transfer. DART 2023. LNCS, vol. 14293. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-45857-6_1

  18. Kushol, R., Masoumzadeh, A., Huo, D., Kalra, S., Yang, Y.H.: Addformer: Alzheimer’s disease detection from structural MRI using fusion transformer. In: IEEE 19th International Symposium on Biomedical Imaging, pp. 1–5. IEEE (2022)

    Google Scholar 

  19. Kushol, R., Parnianpour, P., Wilman, A.H., Kalra, S., Yang, Y.H.: Effects of MRI scanner manufacturers in classification tasks with deep learning models. Sci. Rep. 13(1), 16791 (2023)

    Article  Google Scholar 

  20. Kushol, R., Wilman, A.H., Kalra, S., Yang, Y.H.: DSMRI: domain shift analyzer for multi-center MRI datasets. Diagnostics 13(18), 2947 (2023)

    Article  Google Scholar 

  21. Lee, H., Nakamura, K., Narayanan, S., Brown, R.A., Arnold, D.L., Initiative, A.D.N., et al.: Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements. Neuroimage 184, 555–565 (2019)

    Article  Google Scholar 

  22. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  24. Marek, K., et al.: The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  25. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction (2018). arXiv preprint arXiv:1802.03426

  26. Panman, J.L., et al.: Bias introduced by multiple head coils in MRI research: an 8 channel and 32 channel coil comparison. Front. Neurosci. 13, 729 (2019)

    Article  Google Scholar 

  27. Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset shift in machine learning. MIT Press, Cambridge (2008)

    Google Scholar 

  28. Ranjbarzadeh, R., Caputo, A., Tirkolaee, E.B., Ghoushchi, S.J., Bendechache, M.: Brain tumor segmentation of MRI images: a comprehensive review on the application of artificial intelligence tools. Comput. Biol. Med. 152, 106405 (2023)

    Article  Google Scholar 

  29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  30. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  31. Tian, D., et al.: A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset. Neuroimage 257, 119297 (2022)

    Article  Google Scholar 

  32. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  33. Wightman, R.: Pytorch image models. https://github.com/rwightman/pytorch-image-models (2019). https://doi.org/10.5281/zenodo.4414861

  34. Xu, W., Xu, Y., Chang, T., Tu, Z.: Co-scale conv-attentional image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9981–9990 (2021)

    Google Scholar 

Download references

Acknowledgments

This study has been supported by the Prime Minister Fellowship Bangladesh, Canadian Institutes of Health Research (CIHR), ALS Society of Canada, Brain Canada Foundation, and Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafsanjany Kushol .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Appendix

Appendix

Fig. 6.
figure 6

Visualization of feature representation for a 2D MRI slice using various layers of the pre-trained ResNet50 deep model. The images from left to right display the output of feature representation for layers one to five, respectively.

Fig. 7.
figure 7

Visualizing domain shift via UMAP plots for the CALSNIC1, CALSNIC2, and ADNI2 datasets using the proposed DeepDSMRI framework. Notably, in comparison to the t-SNE method, the UMAP approach tends to produce a more clustered representation.

Table 4. Scanning protocol details of the ADNI1, ADNI2, AIBL, PPMI, ABIDE, CALSNIC1, and CALSNIC2 datasets.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kushol, R., Kalra, S., Yang, YH. (2024). DeepDSMRI: Deep Domain Shift Analyzer for MRI. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66955-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66954-5

  • Online ISBN: 978-3-031-66955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics