Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Backdoor Attacks with Input-Unique Triggers in NLP

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Abstract

Backdoor attack aims to induce neural models to make incorrect predictions for poison data while keeping predictions on the clean dataset unchanged, which creates a considerable threat to current natural language processing (NLP) systems. Existing backdoor attacking systems face two severe issues: firstly, most backdoor triggers follow a uniform and usually input-independent pattern, e.g., insertion of specific trigger words. This significantly hinders the stealthiness of the attacking model, leading to the trained backdoor model being easily identified as malicious by model probes. Secondly, trigger-inserted poisoned sentences are usually disfluent, ungrammatical, or even change the semantic meaning from the original sentence. To resolve these two issues, we propose a method named NURA, where we generate backdoor triggers unique to inputs. NURA generates context-related triggers by continuing to write the input with a language model like GPT2 [2]. The generated sentence is used as the backdoor trigger. This strategy not only creates input-unique backdoor triggers but also preserves the semantics of the original input, simultaneously resolving the two issues above. Experimental results show that the NURA attack is effective for attack and difficult to defend against: it achieves a high attack success rate across all the widely applied benchmarks while being immune to existing defense methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. Ieee Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  2. Brown, T., et al.: Language models are few-shot learners. In: NIPS, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  3. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

  4. Chen, C., Dai, J.: Mitigating backdoor attacks in LSTM-based text classification systems by backdoor keyword identification. Neurocomputing 452, 253–262 (2021)

    Article  Google Scholar 

  5. Chen, K., et al.: BadPre: task-agnostic backdoor attacks to pre-trained NLP foundation models. arXiv preprint arXiv:2110.02467 (2021)

  6. Chen, X., et al.: BadNL: Backdoor attacks against NLP models with semantic-preserving improvements. In: Annual Computer Security Applications Conference, pp. 554–569 (2021)

    Google Scholar 

  7. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

  8. Cui, G., Yuan, L., He, B., Chen, Y., Liu, Z., Sun, M.: A unified evaluation of textual backdoor learning: Frameworks and benchmarks. NIPS 35, 5009–5023 (2022)

    Google Scholar 

  9. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11, pp. 512–515 (2017)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the NAACL, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  11. Doan, K., Lao, Y., Zhao, W., Li, P.: LIRA: learnable, imperceptible and robust backdoor attacks. In: ICCV, pp. 11966–11976 (2021)

    Google Scholar 

  12. Fan, C., et al.: Defending against backdoor attacks in natural language generation. arXiv e-prints, pp. arXiv–2106 (2021)

    Google Scholar 

  13. Gan, L., Li, J., Zhang, T., Li, X., Meng, Y., Wu, F., Guo, S., Fan, C.: Triggerless backdoor attack for nlp tasks with clean labels. arXiv preprint arXiv:2111.07970 (2021)

  14. Gao, Y., et al.: Design and evaluation of a multi-domain trojan detection method on deep neural networks. IEEE Trans. Dependable Secure Comput. 19(4), 2349–2364 (2021)

    Article  Google Scholar 

  15. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: ICML, pp. 1243–1252. PMLR (2017)

    Google Scholar 

  16. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  17. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning model supply chain. arXiv e-prints pp. arXiv–1708 (2017)

    Google Scholar 

  18. Guo, S., Xie, C., Li, J., Lyu, L., Zhang, T.: Threats to pre-trained language models: survey and taxonomy. arXiv preprint arXiv:2202.06862 (2022)

  19. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  20. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: ACL, pp. 151–160 (2011)

    Google Scholar 

  21. Jin, D., Jin, Z., Zhou, J.T., Szolovits, P.: Is BERT really robust? A strong baseline for natural language attack on text classification and entailment. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8018–8025 (2020)

    Google Scholar 

  22. Kim, B., Rudin, C., Shah, J.: The Bayesian case model: a generative approach for case-based reasoning and prototype classification. In: Proceedings of the 27th NIPS, vol. 2, pp. 1952–1960. NIPS 2014, MIT Press, Cambridge, MA, USA (2014)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  24. Kiros, R., et al.: Skip-thought vectors. In: NIPS, vol. 28 (2015)

    Google Scholar 

  25. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: ICML, pp. 1885–1894. PMLR (2017)

    Google Scholar 

  26. Kurita, K., Michel, P., Neubig, G.: Weight poisoning attacks on pretrained models. In: ACL, pp. 2793–2806 (2020)

    Google Scholar 

  27. Kwon, H.: Friend-guard textfooler attack on text classification system. IEEE Access, 1–1 (2021)

    Google Scholar 

  28. Li, L., Song, D., Li, X., Zeng, J., Ma, R., Qiu, X.: Backdoor attacks on pre-trained models by layerwise weight poisoning. In: EMNLP, pp. 3023–3032 (2021)

    Google Scholar 

  29. Li, S., Xue, M., Zhao, B.Z.H., Zhu, H., Zhang, X.: Invisible backdoor attacks on deep neural networks via steganography and regularization. IEEE Trans. Dependable Secure Comput. 18(5), 2088–2105 (2020)

    Google Scholar 

  30. Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-specific triggers. In: ICCV, pp. 16463–16472 (2021)

    Google Scholar 

  31. Liao, C., Zhong, H., Squicciarini, A., Zhu, S., Miller, D.: Backdoor embedding in convolutional neural network models via invisible perturbation. arXiv preprint arXiv:1808.10307 (2018)

  32. Nasar, Z., Jaffry, S.W., Malik, M.K.: Named entity recognition and relation extraction: state-of-the-art. ACM Comput. Surv. (CSUR) 54(1), 1–39 (2021)

    Article  Google Scholar 

  33. Nguyen, T.A., Tran, A.: Input-aware dynamic backdoor attack. In: NIPS, vol. 33, pp. 3454–3464 (2020)

    Google Scholar 

  34. Nguyen, T.A., Tran, A.T.: WaNet - imperceptible warping-based backdoor attack. In: International Conference on Learning Representations (2021)

    Google Scholar 

  35. Ning, R., Li, J., Xin, C., Wu, H.: Invisible poison: a blackbox clean label backdoor attack to deep neural networks. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10. IEEE (2021)

    Google Scholar 

  36. Ohana, B., Tierney, B.: Sentiment classification of reviews using SentiWordNet. In: Proceedings of IT &T, vol. 8 (2009)

    Google Scholar 

  37. Qi, F., Chen, Y., Li, M., Yao, Y., Liu, Z., Sun, M.: Onion: a simple and effective defense against textual backdoor attacks. arXiv preprint arXiv:2011.10369 (2020)

  38. Qi, F., Chen, Y., Zhang, X., Li, M., Liu, Z., Sun, M.: Mind the style of text! adversarial and backdoor attacks based on text style transfer. In: EMNLP, pp. 4569–4580 (2021)

    Google Scholar 

  39. Qi, F., et al.: Hidden Killer: invisible textual backdoor attacks with syntactic trigger. In: Proceedings of the 59th ACL, pp. 443–453 (2021)

    Google Scholar 

  40. Qi, F., Yao, Y., Xu, S., Liu, Z., Sun, M.: Turn the combination lock: Learnable textual backdoor attacks via word substitution. In: Proceedings of the 59th Annual Meeting of ACL, pp. 4873–4883 (2021)

    Google Scholar 

  41. Qi, X., Xie, T., Pan, R., Zhu, J., Yang, Y., Bu, K.: Towards practical deployment-stage backdoor attack on deep neural networks. In: CVPR (2022)

    Google Scholar 

  42. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  43. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

    MathSciNet  Google Scholar 

  44. Sarkar, E., Benkraouda, H., Maniatakos, M.: FaceHack: triggering backdoored facial recognition systems using facial characteristics. arXiv preprint arXiv:2006.11623 (2020)

  45. Shao, K., Zhang, Y., Yang, J., Liu, H.: Textual backdoor defense via poisoned sample recognition. Appl. Sci. 11(21) (2021). https://doi.org/10.3390/app11219938

  46. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP2023, pp. 1631–1642 (2013)

    Google Scholar 

  47. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS, vol. 27 (2014)

    Google Scholar 

  48. Vaswani, A., et al.: Attention is all you need. In: NIPS, vol. 30 (2017)

    Google Scholar 

  49. Wang, J., et al.: Putting words into the system’s mouth: a targeted attack on neural machine translation using monolingual data poisoning. In: ACL-IJCNLP 2021, pp. 1463–1473 (2021)

    Google Scholar 

  50. Xiang, Z., Miller, D.J., Chen, S., Li, X., Kesidis, G.: A backdoor attack against 3d point cloud classifiers. In: ICCV, pp. 7597–7607 (2021)

    Google Scholar 

  51. Yang, W., Lin, Y., Li, P., Zhou, J., Sun, X.: Rap: Robustness-aware perturbations for defending against backdoor attacks on NLP models. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 8365–8381 (2021)

    Google Scholar 

  52. Yang, W., Lin, Y., Li, P., Zhou, J., Sun, X.: Rethinking stealthiness of backdoor attack against NLP models. In: ACL, pp. 5543–5557 (2021)

    Google Scholar 

  53. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: NIPS, vol. 28 (2015)

    Google Scholar 

  54. Zhang, Z., Lyu, L., Wang, W., Sun, L., Sun, X.: How to inject backdoors with better consistency: logit anchoring on clean data. In: International Conference on Learning Representations (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 62072459 and 62172421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Declarements

Backdoor attacks pose a major risk to natural language processing by subtly manipulating model inferences. While existing defenses examine syntactic correctness and repetition, we propose a fluency-preserving perturbation method, named NURA, to clandestinely poison language models during generation rather than post-hoc. By subtly altering inputs, our approach evades rule-based detection while producing fluent poisoned texts. Through this work, we aim to raise awareness of stealthy input-aware backdoors and spur discussion on mitigation, as adversarial examples integrated during training challenge standard defenses and model auditing. Continued exploration of techniques detecting pattern shifts introduced during poisoning may help safeguard applications, emphasizing proactive consideration of diverse attack vectors throughout development to strengthen protections for real-world language systems.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, X., Li, J., Zhang, T., Lyu, L., Yang, M., He, J. (2024). Backdoor Attacks with Input-Unique Triggers in NLP. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14941. Springer, Cham. https://doi.org/10.1007/978-3-031-70341-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70341-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70340-9

  • Online ISBN: 978-3-031-70341-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics