Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tokenize Anything via Prompting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15105))

Included in the following conference series:

Abstract

We present a unified, promptable model capable of simultaneously segmenting, recognizing, and captioning anything. Unlike SAM, we aim to build a versatile region representation in the wild via visual prompting. To achieve this, we train a generalizable model with massive segmentation masks, e.g., SA-1B masks, and semantic priors from a pre-trained CLIP model with 5 billion parameters. Specifically, we construct a promptable image decoder by adding a semantic token to each mask token. The semantic token is responsible for learning the semantic priors in a predefined concept space. Through joint optimization of segmentation on mask tokens and concept prediction on semantic tokens, our model exhibits strong regional recognition and localization capabilities. For example, an additional 38M-parameter causal text decoder trained from scratch sets a new record with a CIDEr score of 164.7 on the Visual Genome region captioning task. We believe this model can be a versatile region-level image tokenizer, capable of encoding general-purpose region context for a broad range of visual perception tasks. Code and models are available at https://github.com/baaivision/tokenize-anything.

T. Pan and L. Tang—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. Adv. Neural. Inf. Process. Syst. 35, 23716–23736 (2022)

    Google Scholar 

  2. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: ICCV, pp. 9157–9166 (2019)

    Google Scholar 

  3. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: CVPR (2021)

    Google Scholar 

  4. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. NeurIPS 34, 17864–17875 (2021)

    Google Scholar 

  5. Ding, J., Xue, N., Xia, G.S., Dai, D.: Decoupling zero-shot semantic segmentation. In: CVPR, pp. 11583–11592 (2022)

    Google Scholar 

  6. Ding, Z., Wang, J., Tu, Z.: Open-vocabulary panoptic segmentation with maskclip. arXiv preprint arXiv:2208.08984 (2022)

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2020)

    Google Scholar 

  8. Geng, X., Liu, H.: Openllama: an open reproduction of llama. URL: https://github.com/openlm-research/open_llama (2023)

  9. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: CVPR, pp. 2918–2928 (2021)

    Google Scholar 

  10. Ghiasi, G., Gu, X., Cui, Y., Lin, T.Y.: Scaling open-vocabulary image segmentation with image-level labels. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, ECCV 2022, LNCS, vol. 13696, pp. 540–557. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_31

  11. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)

  12. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR, pp. 5356–5364 (2019)

    Google Scholar 

  13. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR, pp. 16000–16009 (2022)

    Google Scholar 

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  15. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  16. Huynh, D., Kuen, J., Lin, Z., Gu, J., Elhamifar, E.: Open-vocabulary instance segmentation via robust cross-modal pseudo-labeling. In: CVPR, pp. 7020–7031 (2022)

    Google Scholar 

  17. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  18. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  19. Karazija, L., Laina, I., Vedaldi, A., Rupprecht, C.: Diffusion models for zero-shot open-vocabulary segmentation. arXiv preprint arXiv:2306.09316 (2023)

  20. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  21. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. IJCV 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  22. Kuo, W., Cui, Y., Gu, X., Piergiovanni, A., Angelova, A.: F-vlm: open-vocabulary object detection upon frozen vision and language models. arXiv preprint arXiv:2209.15639 (2022)

  23. Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. IJCV 128(7), 1956–1981 (2020)

    Article  Google Scholar 

  24. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation (2022)

    Google Scholar 

  25. Li, F., et al.: semantic-sam: Segment and recognize anything at any granularity. arXiv preprint arXiv:2307.04767 (2023)

  26. Li, Y., Fan, H., Hu, R., Feichtenhofer, C., He, K.: Scaling language-image pre-training via masking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23390–23400 (2023)

    Google Scholar 

  27. Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones for object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision - ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13669, pp. 280–296. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_17

  28. Li, Y., et al.: Mvitv2: improved multiscale vision transformers for classification and detection. In: CVPR, pp. 4804–4814 (2022)

    Google Scholar 

  29. Liang, F., et al.: Open-vocabulary semantic segmentation with mask-adapted clip. In: CVPR, pp. 7061–7070 (2023)

    Google Scholar 

  30. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  31. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  32. Liu, Z., et al.: Internchat: solving vision-centric tasks by interacting with chatbots beyond language. arXiv preprint arXiv:2305.05662 (2023)

  33. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  34. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  35. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

  36. Lu, J., Clark, C., Zellers, R., Mottaghi, R., Kembhavi, A.: Unified-IO: a unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:2206.08916 (2022)

  37. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR, pp. 11–20 (2016)

    Google Scholar 

  38. Milletari, F., Navab, N., Ahmadi, S., Net, V.: Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  39. Minderer, M., Gritsenko, A., Houlsby, N.: Scaling open-vocabulary object detection. arXiv preprint arXiv:2306.09683 (2023)

  40. Qin, J., et al.: Freeseg: Unified, universal and open-vocabulary image segmentation. In: CVPR, pp. 19446–19455 (2023)

    Google Scholar 

  41. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

    Google Scholar 

  42. Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402 (2022)

  43. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909 (2015)

  44. Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: ICCV, pp. 8430–8439 (2019)

    Google Scholar 

  45. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL, pp. 2556–2565 (2018)

    Google Scholar 

  46. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  47. Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., Liu, Y.: Roformer: enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864 (2021)

  48. Sun, Q., Fang, Y., Wu, L., Wang, X., Cao, Y.: Eva-clip: improved training techniques for clip at scale. arXiv preprint arXiv:2303.15389 (2023)

  49. Sun, Q., et al.: Generative pretraining in multimodality. arXiv preprint arXiv:2307.05222 (2023)

  50. Sun, Y., et al.: VRP-SAM: SAM with visual reference prompt. arXiv preprint arXiv:2402.17726 (2024)

  51. Sun, Z., et al.: Alpha-clip: a clip model focusing on wherever you want. arXiv preprint arXiv:2312.03818 (2023)

  52. Wang, H., et al.: Sam-clip: merging vision foundation models towards semantic and spatial understanding. arXiv preprint arXiv:2310.15308 (2023)

  53. Wang, L., et al.: Object-aware distillation pyramid for open-vocabulary object detection. In: CVPR, pp. 11186–11196 (2023)

    Google Scholar 

  54. Wang, T., et al.: Caption anything: interactive image description with diverse multimodal controls. arXiv preprint arXiv:2305.02677 (2023)

  55. Wang, W., et al.: The all-seeing project: towards panoptic visual recognition and understanding of the open world. arXiv preprint arXiv:2308.01907 (2023)

  56. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_38

    Chapter  Google Scholar 

  57. Wang, X., Wang, W., Cao, Y., Shen, C., Huang, T.: Images speak in images: a generalist painter for in-context visual learning. arXiv preprint arXiv:2212.02499 (2022)

  58. Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: Solov2: dynamic and fast instance segmentation. NeurIPS 33, 17721–17732 (2020)

    Google Scholar 

  59. Wang, X., Zhang, X., Cao, Y., Wang, W., Shen, C., Huang, T.: SegGPT: towards segmenting everything in context. In: ICCV, pp. 1130–1140 (2023)

    Google Scholar 

  60. Wu, J., et al.: Grit: a generative region-to-text transformer for object understanding. arXiv preprint arXiv:2212.00280 (2022)

  61. Wu, J., et al.: Betrayed by captions: joint caption grounding and generation for open vocabulary instance segmentation. arXiv preprint arXiv:2301.00805 (2023)

  62. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: European Conference on Computer Vision, Springer, Cham (2018)

    Google Scholar 

  63. Xiaoke, H., et al.: Segment and caption anything. arXiv preprint arXiv:2312.00869 (2023)

  64. Xiong, Y., et al.: Efficientsam: leveraged masked image pretraining for efficient segment anything. arXiv preprint arXiv:2312.00863 (2023)

  65. Xu, J., De Mello, S., Liu, S., Byeon, W., Breuel, T., Kautz, J., Wang, X.: Groupvit: semantic segmentation emerges from text supervision. In: CVPR, pp. 18134–18144 (2022)

    Google Scholar 

  66. Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., De Mello, S.: Open-vocabulary panoptic segmentation with text-to-image diffusion models. In: CVPR, pp. 2955–2966 (2023)

    Google Scholar 

  67. Yang, H., Ma, C., Wen, B., Jiang, Y., Yuan, Z., Zhu, X.: Recognize any regions. arXiv preprint arXiv:2311.01373 (2023)

  68. Yao, L., et al.: Detclip: dictionary-enriched visual-concept paralleled pre-training for open-world detection. NeurIPS 35, 9125–9138 (2022)

    Google Scholar 

  69. Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: CVPR, pp. 14393–14402 (2021)

    Google Scholar 

  70. Zhang, C., et al.: Faster segment anything: towards lightweight sam for mobile applications. arXiv preprint arXiv:2306.14289 (2023)

  71. Zhang, H., Li, F., Zou, X., Liu, S., Li, C., Yang, J., Zhang, L.: A simple framework for open-vocabulary segmentation and detection. In: ICCV, pp. 1020–1031 (2023)

    Google Scholar 

  72. Zhang, S., et al.: Gpt4roi: instruction tuning large language model on region-of-interest. arXiv preprint arXiv:2307.03601 (2023)

  73. Zheng, L., et al.: Judging llm-as-a-judge with MT-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023)

  74. Zhong, Y., et al.: RegionCLIP: region-based language-image pretraining. In: CVPR, pp. 16793–16803 (2022)

    Google Scholar 

  75. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR, pp. 633–641 (2017)

    Google Scholar 

  76. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from CLIP. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, ECCV 2022, LNCS, vol. 13688, pp. 696–712. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_40

  77. Zou, X., et al.: Generalized decoding for pixel, image, and language. In: CVPR, pp. 15116–15127 (2023)

    Google Scholar 

  78. Zou, X., et al.: Segment everything everywhere all at once. arXiv preprint arXiv:2304.06718 (2023)

Download references

Acknowledgement

This project is supported by the National Key R&D Program of China (2022ZD0116302). We would like to thank Hanxiao Qu and Yan Tian for their help on Cambricon MLU resources, as well as other colleagues at BAAI for their support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6105 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, T., Tang, L., Wang, X., Shan, S. (2025). Tokenize Anything via Prompting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15105. Springer, Cham. https://doi.org/10.1007/978-3-031-72970-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72970-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72969-0

  • Online ISBN: 978-3-031-72970-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics