Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CompGS: Smaller and Faster Gaussian Splatting with Vector Quantization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15090))

Included in the following conference series:

Abstract

3D Gaussian Splatting (3DGS) is a new method for modeling and rendering 3D radiance fields that achieves much faster learning and rendering time compared to SOTA NeRF methods. However, it comes with a drawback in the much larger storage demand compared to NeRF methods since it needs to store the parameters for several 3D Gaussians. We notice that many Gaussians may share similar parameters, so we introduce a simple vector quantization method based on K-means to quantize the Gaussian parameters while optimizing them. Then, we store the small codebook along with the index of the code for each Gaussian. We compress the indices further by sorting them and using a method similar to run-length encoding. Moreover, we use a simple regularizer to encourage zero opacity (invisible Gaussians) to reduce the storage and rendering time by a large factor through reducing the number of Gaussians. We do extensive experiments on standard benchmarks as well as an existing 3D dataset that is an order of magnitude larger than the standard benchmarks used in this field. We show that our simple yet effective method can reduce the storage cost for 3DGS by \(40\times \) to \(50\times \) and rendering time by \(2\times \) to \(3\times \) with a very small drop in the quality of rendered images. Our code is available here: https://github.com/UCDvision/compact3d.

K. L. Navaneet, K. P. Meibodi—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Official code repository of 3d gaussian splatting for real-time radiance field rendering. https://github.com/graphdeco-inria/gaussian-splatting

  2. Abbasi Koohpayegani, S., Tejankar, A., Pirsiavash, H.: Compress: self-supervised learning by compressing representations. In: Advances in Neural Information Processing Systems, vol. 33, pp. 33, 12980–12992 (2020)

    Google Scholar 

  3. Ba, L.J., Caruana, R.: Do deep nets really need to be deep? arXiv preprint arXiv:1312.6184 (2013)

  4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: MIP-Nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  5. Baruch, G., et al.: Arkitscenes - a diverse real-world dataset for 3D indoor scene understanding using mobile RGB-D data. In: NeurIPS (2021). https://arxiv.org/pdf/2111.08897.pdf

  6. Baruch, G., et al.: ARKitscenes: a diverse real-world dataset for 3D indoor scene understanding using mobile RGB-d data. In: Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021). https://openreview.net/forum?id=tjZjv_qh_CE

  7. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  8. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

    Chapter  Google Scholar 

  9. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 742–751 (2017)

    Google Scholar 

  10. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: MobileNerf: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16569–16578 (2023)

    Google Scholar 

  11. Cho, M., et al.: EDKM: an efficient and accurate train-time weight clustering for large language models. arXiv preprint arXiv:2309.00964 (2023)

  12. Cosman, P.C., Oehler, K.L., Riskin, E.A., Gray, R.M.: Using vector quantization for image processing. Proc. IEEE 81(9), 1326–1341 (1993)

    Article  Google Scholar 

  13. Deng, C.L., Tartaglione, E.: Compressing explicit voxel grid representations: fast nerfs become also small. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1236–1245 (2023)

    Google Scholar 

  14. Dettmers, T., Lewis, M., Belkada, Y., Zettlemoyer, L.: Llm. int8 (): 8-bit matrix multiplication for transformers at scale. arXiv preprint arXiv:2208.07339 (2022)

  15. Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Trans. Acoust. Speech Sig. Process. 37(10), 1568–1575 (1989)

    Article  Google Scholar 

  16. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: LightGaussian: unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint arXiv:2311.17245 (2023)

  17. Flynn, J., Neulander, I., Philbin, J., Snavely, N.: Deepstereo: learning to predict new views from the world’s imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5515–5524 (2016)

    Google Scholar 

  18. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  19. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: FastNerf: high-fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14346–14355 (2021)

    Google Scholar 

  20. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression, vol. 159. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-3626-0

    Book  Google Scholar 

  21. Girish, S., Gupta, K., Shrivastava, A.: Eagles: efficient accelerated 3D Gaussians with lightweight encodings. arXiv preprint arXiv:2312.04564 (2023)

  22. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014)

  23. Gray, R.: Vector quantization. IEEE ASSP Mag. 1(2), 4–29 (1984)

    Article  Google Scholar 

  24. Gu, S., et al.: Vector quantized diffusion model for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696–10706 (2022)

    Google Scholar 

  25. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: International Conference on Machine Learning, pp. 1737–1746. PMLR (2015)

    Google Scholar 

  26. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015)

  27. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (ToG) 37(6), 1–15 (2018)

    Article  Google Scholar 

  28. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking neural radiance fields for real-time view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5875–5884 (2021)

    Google Scholar 

  29. Henzler, P., Mitra, N.J., Ritschel, T.: Escaping Plato’s cave: 3D shape from adversarial rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9984–9993 (2019)

    Google Scholar 

  30. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  31. Huang, B., Yan, X., Chen, A., Gao, S., Yu, J.: Pref: phasorial embedding fields for compact neural representations. arXiv preprint arXiv:2205.13524 (2022)

  32. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2704–2713 (2018)

    Google Scholar 

  33. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (ToG) 42(4), 1–14 (2023)

    Article  Google Scholar 

  34. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  35. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference: a whitepaper. arXiv preprint arXiv:1806.08342 (2018)

  36. Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3D Gaussian representation for radiance field. arXiv preprint arXiv:2311.13681 (2023)

  37. Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3D Gaussian representation for radiance field. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21719–21728 (2024)

    Google Scholar 

  38. Lee, Y.Y., Woods, J.W.: Motion vector quantization for video coding. IEEE Trans. Image Process. 4(3), 378–382 (1995)

    Article  Google Scholar 

  39. Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing volumetric radiance fields to 1 mb. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4222–4231 (2023)

    Google Scholar 

  40. Li, L., Shen, Z., Wang, Z., Shen, L., Tan, P.: Streaming radiance fields for 3D video synthesis. In: Advances in Neural Information Processing Systems, vol. 35, pp. 13485–13498 (2022)

    Google Scholar 

  41. Ling, L., et al.: Dl3dv-10k: a large-scale scene dataset for deep learning-based 3D vision. arXiv preprint arXiv:2312.16256 (2023)

  42. Makhoul, J., Roucos, S., Gish, H.: Vector quantization in speech coding. Proc. IEEE 73(11), 1551–1588 (1985)

    Article  Google Scholar 

  43. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24, http://arxiv.org/abs/2003.08934v2

  44. Morgenstern, W., Barthel, F., Hilsmann, A., Eisert, P.: Compact 3D scene representation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299 (2023)

  45. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  46. Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3D Gaussian splatting for accelerated novel view synthesis. arXiv preprint arXiv:2401.02436 (2023)

  47. Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3D Gaussian splatting for accelerated novel view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10349–10358 (2024)

    Google Scholar 

  48. Nooralinejad, P., et al.: Pranc: pseudo random networks for compacting deep models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17021–17031 (2023)

    Google Scholar 

  49. Peng, S., Jiang, C., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape as points: a differentiable Poisson solver. In: Advances in Neural Information Processing Systems, vol. 34, pp. 13032–13044 (2021)

    Google Scholar 

  50. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. ACM Trans. Graph. (TOG) 36(6), 1–11 (2017)

    Article  Google Scholar 

  51. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668 (2018)

  52. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: imagenet classification using binary convolutional neural networks (2016)

    Google Scholar 

  53. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  54. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  55. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNerf: speeding up neural radiance fields with thousands of tiny MLPs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14335–14345 (2021)

    Google Scholar 

  56. Riegler, G., Koltun, V.: Free view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XIX. LNCS, vol. 12364, pp. 623–640. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_37

    Chapter  Google Scholar 

  57. Schwarz, K., Sauer, A., Niemeyer, M., Liao, Y., Geiger, A.: Voxgraf: fast 3D-aware image synthesis with sparse voxel grids. In: Advances in Neural Information Processing Systems, vol. 35, pp. 33999–34011 (2022)

    Google Scholar 

  58. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: learning persistent 3D feature embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2446 (2019)

    Google Scholar 

  59. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)

    Google Scholar 

  60. Takikawa, T., et al.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–9 (2022)

    Google Scholar 

  61. Tang, J., Chen, X., Wang, J., Zeng, G.: Compressible-composable nerf via rank-residual decomposition. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  62. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  63. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  64. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on CPUs (2011)

    Google Scholar 

  65. Wang, L., et al.: Fourier plenoctrees for dynamic radiance field rendering in real-time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13524–13534 (2022)

    Google Scholar 

  66. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. arXiv preprint arXiv:1608.03665 (2016)

  67. Wu, X., et al.: Scalable neural indoor scene rendering. ACM Trans. Graph. (TOG) (2022)

    Google Scholar 

  68. Xu, Q., et al.: Point-Nerf: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)

    Google Scholar 

  69. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)

    Google Scholar 

  70. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is partially funded by NSF grant 1845216 and DARPA Contract No. HR00112190135 and HR00112290115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K L Navaneet .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13937 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navaneet, K.L., Pourahmadi Meibodi, K., Abbasi Koohpayegani, S., Pirsiavash, H. (2025). CompGS: Smaller and Faster Gaussian Splatting with Vector Quantization. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73411-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73410-6

  • Online ISBN: 978-3-031-73411-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics