Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SCP-Diff: Spatial-Categorical Joint Prior for Diffusion Based Semantic Image Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15090))

Included in the following conference series:

  • 180 Accesses

Abstract

Semantic image synthesis (SIS) shows good promises for sensor simulation. However, current best practices in this field, based on GANs, have not yet reached the desired level of quality. As latent diffusion models make significant strides in image generation, we are prompted to evaluate ControlNet, a notable method for its dense control capabilities. Our investigation uncovered two primary issues with its results: the presence of weird sub-structures within large semantic areas and the misalignment of content with the semantic mask. Through empirical study, we pinpointed the cause of these problems as a mismatch between the noised training data distribution and the standard normal prior applied at the inference stage. To address this challenge, we developed specific noise priors for SIS, encompassing spatial, categorical, and an innovative spatial-categorical joint prior for inference. This approach, which we have named SCP-Diff, has set new state-of-the-art results in SIS on Cityscapes, ADE20K and COCO-Stuff, yielding a FID as low as 10.53 on Cityscapes. The code and models can be accessed via the project page.

H. Gao and M. Gao—Equal Contribution.

Project Page: https://air-discover.github.io/SCP-Diff/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The real images in Fig. 1 are all in the left.

  2. 2.

    This research is supported by Tsinghua University - Mercedes Benz Institute for Sustainable Mobility.

References

  1. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022)

    Google Scholar 

  2. Balaji, Y., et al.: eDiffi: text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)

  3. Caesar, H., Uijlings, J., Ferrari, V.: COCO-stuff: thing and stuff classes in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1209–1218 (2018)

    Google Scholar 

  4. Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., Zheng, Y.: MasaCtrl: tuning-free mutual self-attention control for consistent image synthesis and editing. arXiv preprint arXiv:2304.08465 (2023)

  5. Chen, M., et al.: Ultraman: single image 3D human reconstruction with ultra speed and detail. arXiv preprint arXiv:2403.12028 (2024)

  6. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1520 (2017)

    Google Scholar 

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  8. Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: DiffEdit: diffusion-based semantic image editing with mask guidance. arXiv preprint arXiv:2210.11427 (2022)

  9. Duan, Y., Guo, X., Zhu, Z.: DiffusionDepth: diffusion denoising approach for monocular depth estimation. arXiv preprint arXiv:2303.05021 (2023)

  10. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

    Google Scholar 

  11. Everaert, M.N., Fitsios, A., Bocchio, M., Arpa, S., Süsstrunk, S., Achanta, R.: Exploiting the signal-leak bias in diffusion models. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4025–4034 (2024)

    Google Scholar 

  12. Gao, H.a., et al.: From semi-supervised to omni-supervised room layout estimation using point clouds. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 2803–2810. IEEE (2023)

    Google Scholar 

  13. Gao, H.a., Tian, B., Li, P., Zhao, H., Zhou, G.: DQS3D: densely-matched quantization-aware semi-supervised 3D detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21905–21915 (2023)

    Google Scholar 

  14. Ge, S., et al.: Preserve Your Own Correlation: a noise prior for video diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22930–22941 (2023)

    Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  16. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  18. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  19. Jiang, Z., et al.: P-MapNet: far-seeing map generator enhanced by both SDMap and HDMap priors. arXiv preprint arXiv:2403.10521 (2024)

  20. Li, W., et al.: FairDiff: fair segmentation with point-image diffusion. arXiv preprint arXiv:2407.06250 (2024)

  21. Lin, S., Liu, B., Li, J., Yang, X.: Common diffusion noise schedules and sample steps are flawed. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5404–5411 (2024)

    Google Scholar 

  22. Liu, X., Yin, G., Shao, J., Wang, X., et al.: Learning to predict layout-to-image conditional convolutions for semantic image synthesis. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Lu, M., Zhao, H., Yao, A., Chen, Y., Xu, F., Zhang, L.: A closed-form solution to universal style transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5952–5961 (2019)

    Google Scholar 

  24. Luo, W., Yang, S., Wang, H., Long, B., Zhang, W.: Context-consistent semantic image editing with style-preserved modulation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13677, pp. 561–578. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_34

  25. Luo, W., Yang, S., Zhang, X., Zhang, W.: SIEDOB: semantic image editing by disentangling object and background. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1868–1878 (2023)

    Google Scholar 

  26. Lv, Z., Li, X., Niu, Z., Cao, B., Zuo, W.: Semantic-shape adaptive feature modulation for semantic image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11214–11223 (2022)

    Google Scholar 

  27. Lv, Z., Wei, Y., Zuo, W., Wong, K.Y.K.: Place: Adaptive layout-semantic fusion for semantic image synthesis (2024)

    Google Scholar 

  28. Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion for editing real images using guided diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–6047 (2023)

    Google Scholar 

  29. Ntavelis, E., Romero, A., Kastanis, I., Van Gool, L., Timofte, R.: SESAME: semantic editing of scenes by adding, manipulating or erasing objects. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 394–411. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_24

    Chapter  Google Scholar 

  30. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  31. Qi, X., Chen, Q., Jia, J., Koltun, V.: Semi-parametric image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8808–8816 (2018)

    Google Scholar 

  32. Qiu, H., et al.: FREENOISE: tuning-free longer video diffusion via noise rescheduling. arXiv preprint arXiv:2310.15169 (2023)

  33. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251(2), 3 (2022)

  34. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  35. Shi, Y., Liu, X., Wei, Y., Wu, Z., Zuo, W.: Retrieval-based spatially adaptive normalization for semantic image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11224–11233 (2022)

    Google Scholar 

  36. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  37. Sushko, V., Schönfeld, E., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: OASIS: only adversarial supervision for semantic image synthesis. Int. J. Comput. Vision 130(12), 2903–2923 (2022)

    Article  Google Scholar 

  38. Tan, Z., et al.: Diverse semantic image synthesis via probability distribution modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7962–7971 (2021)

    Google Scholar 

  39. Tan, Z., et al.: Efficient semantic image synthesis via class-adaptive normalization. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4852–4866 (2021)

    Google Scholar 

  40. Tang, H., Bai, S., Sebe, N.: Dual attention GANs for semantic image synthesis. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1994–2002 (2020)

    Google Scholar 

  41. Tang, H., et al.: Edge guided GANs with contrastive learning for semantic image synthesis. arXiv preprint arXiv:2003.13898 (2020)

  42. Tang, H., Sebe, N.: Layout-to-image translation with double pooling generative adversarial networks. IEEE Trans. Image Process. 30, 7903–7913 (2021)

    Article  Google Scholar 

  43. Tang, H., Shao, L., Torr, P.H., Sebe, N.: Local and global GANs with semantic-aware Upsampling for image generation. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 768–784 (2022)

    Article  Google Scholar 

  44. Tang, H., Sun, G., Sebe, N., Van Gool, L.: Edge guided GANs with multi-scale contrastive learning for semantic image synthesis. IEEE Trans. Pattern Anal. Mach. Intell. 45(12), 14435–14452 (2023)

    Google Scholar 

  45. Tang, H., Torr, P.H., Sebe, N.: Multi-channel attention selection GANs for guided image-to-image translation. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 6055–6071 (2022)

    Google Scholar 

  46. Tang, H., Xu, D., Sebe, N., Wang, Y., Corso, J.J., Yan, Y.: Multi-channel attention selection GAN with cascaded semantic guidance for cross-view image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2417–2426 (2019)

    Google Scholar 

  47. Tang, H., Xu, D., Yan, Y., Torr, P.H., Sebe, N.: Local class-specific and global image-level generative adversarial networks for semantic-guided scene generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7870–7879 (2020)

    Google Scholar 

  48. Tian, B., Liu, M., Gao, H.a., Li, P., Zhao, H., Zhou, G.: Unsupervised road anomaly detection with language anchors. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7778–7785. IEEE (2023)

    Google Scholar 

  49. Voynov, A., Chu, Q., Cohen-Or, D., Aberman, K.: \( P+ \): extended textual conditioning in text-to-image generation. arXiv preprint arXiv:2303.09522 (2023)

  50. Wang, T., et al.: Pretraining is all you need for image-to-image translation. arXiv preprint arXiv:2205.12952 (2022)

  51. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  52. Wang, W., et al.: Semantic image synthesis via diffusion models. arXiv preprint arXiv:2207.00050 (2022)

  53. Wang, Y., Qi, L., Chen, Y.C., Zhang, X., Jia, J.: Image synthesis via semantic composition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13749–13758 (2021)

    Google Scholar 

  54. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  55. Wu, T., Si, C., Jiang, Y., Huang, Z., Liu, Z.: FreeInit: bridging initialization Gap in video diffusion models. arXiv preprint arXiv:2312.07537 (2023)

  56. Xue, H., Huang, Z., Sun, Q., Song, L., Zhang, W.: Freestyle layout-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14256–14266 (2023)

    Google Scholar 

  57. Yang, L., Xu, X., Kang, B., Shi, Y., Zhao, H.: FreeMask: synthetic images with dense annotations make stronger segmentation models. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  58. Zhang, J., Chang, S.Y., Li, K., Forsyth, D.: Preserving image properties through initializations in diffusion models. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5242–5250 (2024)

    Google Scholar 

  59. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)

    Google Scholar 

  60. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  61. Zheng, Y., et al.: STEPS: joint self-supervised nighttime image enhancement and depth estimation. arXiv preprint arXiv:2302.01334 (2023)

  62. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

  63. Zhu, Z., Xu, Z., You, A., Bai, X.: Semantically multi-modal image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5467–5476 (2020)

    Google Scholar 

Download references

Acknowledgements

This research is supported by Tsinghua University - Mercedes Benz Institute for Sustainable Mobility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3275 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Ha. et al. (2025). SCP-Diff: Spatial-Categorical Joint Prior for Diffusion Based Semantic Image Synthesis. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73411-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73410-6

  • Online ISBN: 978-3-031-73411-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics