Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15090))

Included in the following conference series:

  • 223 Accesses

Abstract

Model Inversion (MI) attacks aim to reconstruct privacy-sensitive training data from released models by utilizing output information, raising extensive concerns about the security of Deep Neural Networks (DNNs). Recent advances in generative adversarial networks (GANs) have contributed significantly to the improved performance of MI attacks due to their powerful ability to generate realistic images with high fidelity and appropriate semantics. However, previous MI attacks have solely disclosed private information in the latent space of GAN priors, limiting their semantic extraction and transferability across multiple target models and datasets. To address this challenge, we propose a novel method, Intermediate Features enhanced Generative Model Inversion (IF-GMI), which disassembles the GAN structure and exploits features between intermediate blocks. This allows us to extend the optimization space from latent code to intermediate features with enhanced expressive capabilities. To prevent GAN priors from generating unrealistic images, we apply a \({l}_1\) ball constraint to the optimization process. Experiments on multiple benchmarks demonstrate that our method significantly outperforms previous approaches and achieves state-of-the-art results under various settings, especially in the out-of-distribution (OOD) scenario. Our code is available at: https://github.com/final-solution/IF-GMI.

Y. Qiu, H. Fang, H. Yu—Equal contribution.

This work was done while Yixiang Qiu was pre-admitted to Tsinghua University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: how to embed images into the stylegan latent space? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4432–4441 (2019)

    Google Scholar 

  2. An, S., et al.: Mirror: model inversion for deep learning network with high fidelity. In: NDSS (2022)

    Google Scholar 

  3. Bau, D., et al.: Gan dissection: visualizing and understanding generative adversarial networks. arXiv preprint arXiv:1811.10597 (2018)

  4. Chen, B., et al.: Adversarial examples generation for deep product quantization networks on image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1388–1404 (2022)

    Article  Google Scholar 

  5. Chen, S., Kahla, M., Jia, R., Qi, G.J.: Knowledge-enriched distributional model inversion attacks. In: ICCV (2021)

    Google Scholar 

  6. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8188–8197 (2020)

    Google Scholar 

  7. Conneau, A., Baevski, A., Collobert, R., Mohamed, A., Auli, M.: Unsupervised cross-lingual representation learning for speech recognition. arXiv preprint arXiv:2006.13979 (2020)

  8. Daras, G., Dean, J., Jalal, A., Dimakis, A.G.: Intermediate layer optimization for inverse problems using deep generative models. arXiv preprint arXiv:2102.07364 (2021)

  9. Dataset, E.: Novel datasets for fine-grained image categorization. In: First Workshop on Fine Grained Visual Categorization, CVPR. Citeseer. Citeseer. Citeseer (2011)

    Google Scholar 

  10. Fang, H., Chen, B., Wang, X., Wang, Z., Xia, S.T.: GIFD: a generative gradient inversion method with feature domain optimization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4967–4976 (2023)

    Google Scholar 

  11. Fang, H., et al.: One perturbation is enough: on generating universal adversarial perturbations against vision-language pre-training models. arXiv preprint arXiv:2406.05491 (2024)

  12. Fang, H., et al.: Privacy leakage on DNNs: a survey of model inversion attacks and defenses. arXiv preprint arXiv:2402.04013 (2024)

  13. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: CCS, pp. 1322–1333 (2015)

    Google Scholar 

  14. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in pharmacogenetics: an \(\{\)End-to-End\(\}\) case study of personalized warfarin dosing. In: USENIX Security, pp. 17–32 (2014)

    Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P.S., Zhang, X.: Membership inference attacks on machine learning: a survey. ACM Comput. Surv. (CSUR) 54(11s), 1–37 (2022)

    Article  Google Scholar 

  20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  21. Kahla, M., Chen, S., Just, H.A., Jia, R.: Label-only model inversion attacks via boundary repulsion. In: CVPR (2022)

    Google Scholar 

  22. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. Adv. Neural. Inf. Process. Syst. 33, 12104–12114 (2020)

    Google Scholar 

  23. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  24. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  25. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  26. Li, C., Qiu, M.: Reinforcement Learning for Cyber-Physical Systems: With Cybersecurity Case Studies. Chapman and Hall/CRC (2019)

    Google Scholar 

  27. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  28. Naeem, M.F., Oh, S.J., Uh, Y., Choi, Y., Yoo, J.: Reliable fidelity and diversity metrics for generative models. In: International Conference on Machine Learning, pp. 7176–7185. PMLR (2020)

    Google Scholar 

  29. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 343–347. IEEE (2014)

    Google Scholar 

  30. Nguyen, N.B., Chandrasegaran, K., Abdollahzadeh, M., Cheung, N.M.: Re-thinking model inversion attacks against deep neural networks. In: CVPR, pp. 16384–16393 (2023)

    Google Scholar 

  31. Park, J.Y., Smedemark-Margulies, N., Daniels, M., Yu, R., van de Meent, J.W., HAnd, P.: Generator surgery for compressed sensing. In: NeurIPS 2020 Workshop on Deep Learning and Inverse Problems (2020). https://openreview.net/forum?id=s2EucjZ6d2s

  32. Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., Qiu, M.: Adversarial attacks against network intrusion detection in IoT systems. IEEE Internet Things J. 8(13), 10327–10335 (2020)

    Article  Google Scholar 

  33. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  34. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243–9252 (2020)

    Google Scholar 

  35. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  36. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember too much. In: CCS, pp. 587–601 (2017)

    Google Scholar 

  37. Struppek, L., Hintersdorf, D., Correira, A.D.A., Adler, A., Kersting, K.: Plug & play attacks: towards robust and flexible model inversion attacks. In: ICML (2022)

    Google Scholar 

  38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  39. Tewari, A., et al.: Pie: portrait image embedding for semantic control. ACM Trans. Graphics (TOG) 39(6), 1–14 (2020)

    Article  Google Scholar 

  40. Wang, K.C., Fu, Y., Li, K., Khisti, A., Zemel, R., Makhzani, A.: Variational model inversion attacks. In: NeurIPS (2021)

    Google Scholar 

  41. Wu, C., Yan, M.: Session-aware information embedding for e-commerce product recommendation. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2379–2382 (2017)

    Google Scholar 

  42. Yang, Z., Zhang, J., Chang, E.C., Liang, Z.: Neural network inversion in adversarial setting via background knowledge alignment. In: CCS (2019)

    Google Scholar 

  43. Yin, H., et al.: Dreaming to distill: Data-free knowledge transfer via deepinversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8715–8724 (2020)

    Google Scholar 

  44. Yu, W., Chen, B., Zhang, Q., Xia, S.T.: Editable-deepsc: cross-modal editable semantic communication systems. arXiv preprint arXiv:2310.10347 (2023)

  45. Yu, W., et al.: GI-NAS: boosting gradient inversion attacks through adaptive neural architecture search. arXiv preprint arXiv:2405.20725 (2024)

  46. Yuan, X., Chen, K., Zhang, J., Zhang, W., Yu, N., Zhang, Y.: Pseudo label-guided model inversion attack via conditional generative adversarial network. In: AAAI (2023)

    Google Scholar 

  47. Yuan, Z., Wu, F., Long, Y., Xiao, C., Li, B.: Secretgen: privacy recovery on pre-trained models via distribution discrimination. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13665, pp. 139–155. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20065-6_9

    Chapter  Google Scholar 

  48. Zeng, Y., Pan, M., Just, H.A., Lyu, L., Qiu, M., Jia, R.: Narcissus: a practical clean-label backdoor attack with limited information. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 771–785 (2023)

    Google Scholar 

  49. Zhang, H., et al.: Resnest: split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736–2746 (2022)

    Google Scholar 

  50. Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., Song, D.: The secret revealer: generative model-inversion attacks against deep neural networks. In: CVPR (2020)

    Google Scholar 

  51. Zhong, X., et al.: Hierarchical features matter: a deep exploration of GAN priors for improved dataset distillation. arXiv preprint arXiv:2406.05704 (2024)

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China under grant 62171248, 62301189, Guangdong Basic and Applied Basic Research Foundation under grant 2021A1515110066, the PCNL KEY project (PCL2021A07), and Shenzhen Science and Technology Program under Grant JCYJ20220818101012025, RCBS20221008093124061, GXWD20220811172936001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 901 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, Y., Fang, H., Yu, H., Chen, B., Qiu, M., Xia, ST. (2025). A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73411-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73410-6

  • Online ISBN: 978-3-031-73411-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics