Abstract
Model Inversion (MI) attacks aim to reconstruct privacy-sensitive training data from released models by utilizing output information, raising extensive concerns about the security of Deep Neural Networks (DNNs). Recent advances in generative adversarial networks (GANs) have contributed significantly to the improved performance of MI attacks due to their powerful ability to generate realistic images with high fidelity and appropriate semantics. However, previous MI attacks have solely disclosed private information in the latent space of GAN priors, limiting their semantic extraction and transferability across multiple target models and datasets. To address this challenge, we propose a novel method, Intermediate Features enhanced Generative Model Inversion (IF-GMI), which disassembles the GAN structure and exploits features between intermediate blocks. This allows us to extend the optimization space from latent code to intermediate features with enhanced expressive capabilities. To prevent GAN priors from generating unrealistic images, we apply a \({l}_1\) ball constraint to the optimization process. Experiments on multiple benchmarks demonstrate that our method significantly outperforms previous approaches and achieves state-of-the-art results under various settings, especially in the out-of-distribution (OOD) scenario. Our code is available at: https://github.com/final-solution/IF-GMI.
Y. Qiu, H. Fang, H. Yu—Equal contribution.
This work was done while Yixiang Qiu was pre-admitted to Tsinghua University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: how to embed images into the stylegan latent space? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4432–4441 (2019)
An, S., et al.: Mirror: model inversion for deep learning network with high fidelity. In: NDSS (2022)
Bau, D., et al.: Gan dissection: visualizing and understanding generative adversarial networks. arXiv preprint arXiv:1811.10597 (2018)
Chen, B., et al.: Adversarial examples generation for deep product quantization networks on image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1388–1404 (2022)
Chen, S., Kahla, M., Jia, R., Qi, G.J.: Knowledge-enriched distributional model inversion attacks. In: ICCV (2021)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8188–8197 (2020)
Conneau, A., Baevski, A., Collobert, R., Mohamed, A., Auli, M.: Unsupervised cross-lingual representation learning for speech recognition. arXiv preprint arXiv:2006.13979 (2020)
Daras, G., Dean, J., Jalal, A., Dimakis, A.G.: Intermediate layer optimization for inverse problems using deep generative models. arXiv preprint arXiv:2102.07364 (2021)
Dataset, E.: Novel datasets for fine-grained image categorization. In: First Workshop on Fine Grained Visual Categorization, CVPR. Citeseer. Citeseer. Citeseer (2011)
Fang, H., Chen, B., Wang, X., Wang, Z., Xia, S.T.: GIFD: a generative gradient inversion method with feature domain optimization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4967–4976 (2023)
Fang, H., et al.: One perturbation is enough: on generating universal adversarial perturbations against vision-language pre-training models. arXiv preprint arXiv:2406.05491 (2024)
Fang, H., et al.: Privacy leakage on DNNs: a survey of model inversion attacks and defenses. arXiv preprint arXiv:2402.04013 (2024)
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: CCS, pp. 1322–1333 (2015)
Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in pharmacogenetics: an \(\{\)End-to-End\(\}\) case study of personalized warfarin dosing. In: USENIX Security, pp. 17–32 (2014)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural Information Processing Systems, vol. 27 (2014)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P.S., Zhang, X.: Membership inference attacks on machine learning: a survey. ACM Comput. Surv. (CSUR) 54(11s), 1–37 (2022)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Kahla, M., Chen, S., Just, H.A., Jia, R.: Label-only model inversion attacks via boundary repulsion. In: CVPR (2022)
Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. Adv. Neural. Inf. Process. Syst. 33, 12104–12114 (2020)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Li, C., Qiu, M.: Reinforcement Learning for Cyber-Physical Systems: With Cybersecurity Case Studies. Chapman and Hall/CRC (2019)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)
Naeem, M.F., Oh, S.J., Uh, Y., Choi, Y., Yoo, J.: Reliable fidelity and diversity metrics for generative models. In: International Conference on Machine Learning, pp. 7176–7185. PMLR (2020)
Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 343–347. IEEE (2014)
Nguyen, N.B., Chandrasegaran, K., Abdollahzadeh, M., Cheung, N.M.: Re-thinking model inversion attacks against deep neural networks. In: CVPR, pp. 16384–16393 (2023)
Park, J.Y., Smedemark-Margulies, N., Daniels, M., Yu, R., van de Meent, J.W., HAnd, P.: Generator surgery for compressed sensing. In: NeurIPS 2020 Workshop on Deep Learning and Inverse Problems (2020). https://openreview.net/forum?id=s2EucjZ6d2s
Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., Qiu, M.: Adversarial attacks against network intrusion detection in IoT systems. IEEE Internet Things J. 8(13), 10327–10335 (2020)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243–9252 (2020)
Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)
Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember too much. In: CCS, pp. 587–601 (2017)
Struppek, L., Hintersdorf, D., Correira, A.D.A., Adler, A., Kersting, K.: Plug & play attacks: towards robust and flexible model inversion attacks. In: ICML (2022)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Tewari, A., et al.: Pie: portrait image embedding for semantic control. ACM Trans. Graphics (TOG) 39(6), 1–14 (2020)
Wang, K.C., Fu, Y., Li, K., Khisti, A., Zemel, R., Makhzani, A.: Variational model inversion attacks. In: NeurIPS (2021)
Wu, C., Yan, M.: Session-aware information embedding for e-commerce product recommendation. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2379–2382 (2017)
Yang, Z., Zhang, J., Chang, E.C., Liang, Z.: Neural network inversion in adversarial setting via background knowledge alignment. In: CCS (2019)
Yin, H., et al.: Dreaming to distill: Data-free knowledge transfer via deepinversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8715–8724 (2020)
Yu, W., Chen, B., Zhang, Q., Xia, S.T.: Editable-deepsc: cross-modal editable semantic communication systems. arXiv preprint arXiv:2310.10347 (2023)
Yu, W., et al.: GI-NAS: boosting gradient inversion attacks through adaptive neural architecture search. arXiv preprint arXiv:2405.20725 (2024)
Yuan, X., Chen, K., Zhang, J., Zhang, W., Yu, N., Zhang, Y.: Pseudo label-guided model inversion attack via conditional generative adversarial network. In: AAAI (2023)
Yuan, Z., Wu, F., Long, Y., Xiao, C., Li, B.: Secretgen: privacy recovery on pre-trained models via distribution discrimination. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13665, pp. 139–155. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20065-6_9
Zeng, Y., Pan, M., Just, H.A., Lyu, L., Qiu, M., Jia, R.: Narcissus: a practical clean-label backdoor attack with limited information. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 771–785 (2023)
Zhang, H., et al.: Resnest: split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736–2746 (2022)
Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., Song, D.: The secret revealer: generative model-inversion attacks against deep neural networks. In: CVPR (2020)
Zhong, X., et al.: Hierarchical features matter: a deep exploration of GAN priors for improved dataset distillation. arXiv preprint arXiv:2406.05704 (2024)
Acknowledgments
This work is supported in part by the National Natural Science Foundation of China under grant 62171248, 62301189, Guangdong Basic and Applied Basic Research Foundation under grant 2021A1515110066, the PCNL KEY project (PCL2021A07), and Shenzhen Science and Technology Program under Grant JCYJ20220818101012025, RCBS20221008093124061, GXWD20220811172936001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qiu, Y., Fang, H., Yu, H., Chen, B., Qiu, M., Xia, ST. (2025). A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-73411-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73410-6
Online ISBN: 978-3-031-73411-3
eBook Packages: Computer ScienceComputer Science (R0)