Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Revisiting the Complex Multiplication Method for the Construction of Elliptic Curves

  • Chapter
Computation, Cryptography, and Network Security

Abstract

In this article we give a detailed overview of the Complex Multiplication (CM) method for constructing elliptic curves with a given number of points. In the core of this method, there is a special polynomial called Hilbert class polynomial which is constructed with input a fundamental discriminantd < 0. The construction of this polynomial is the most demanding and time-consuming part of the method and thus the use of several alternative polynomials has been proposed in previous work. All these polynomials are calledclass polynomials and they are generated by proper values of modular functions calledclass invariants. Besides an analysis on these polynomials, in this paper we will describe our results about finding new class invariants using the Shimura reciprocity law. Finally, we will see how the choice of the discriminant can affect the degree of the class polynomial and consequently the efficiency of the whole CM method.

The authors were partially supported by the Project “Thalis, Algebraic modeling of topological and computational structures”. The Project “THALIS” is implemented under the Operational Project “Education and Life Long Learning”and is co-funded by the European Union (European Social Fund) and National Resources (ESPA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Complex Analysis. An introduction to the Theory of Analytic Functions of One Complex Variable, 3rd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1978)

    Google Scholar 

  2. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography London Mathematical Society Lecture Note Series, vol. 165, New York (1999)

    Google Scholar 

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput.24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruce, C., Berndt, H., Huat, C.: Ramanujan and the modularj-invariant. Can. Math. Bull.42(4), 427–440 (1999). MR MR1727340 (2002a:11035)

    Google Scholar 

  5. David, A.C.: Primes of the Form\(x^{2} + ny^{2}\): Fermat, Class Field Theory and Complex Multiplication. Wiley, New York (1989). MR MR1028322 (90m:11016)

    Google Scholar 

  6. Enge, A., Schertz, R.: Constructing elliptic curves over finite fields using double eta-quotients. J. Théor. Nombres Bordeaux16, 555–568 (2004). (MR2144957)

    Google Scholar 

  7. Fröhlich, A., Taylor, M.J.: Algebraic Number Theory. Cambridge Studies in Advanced Mathematics, vol. 27. Cambridge University Press, Cambridge (1993). xiv+355 pp. ISBN: 0-521-43834-9

    Google Scholar 

  8. Gauss, C.F.: Disquisitiones Arithmeticae. Traducida por Arthur A. Clarke. Yale University Press, New Haven and London (1966)

    MATH  Google Scholar 

  9. Gee, A.: Class invariants by Shimura’s reciprocity law, J. Théor. Nombres Bordeaux11(1), 45–72 (1999) Les XXèmes Journées Arithmétiques (Limoges, 1997). MR MR1730432 (2000i:11171)

    Google Scholar 

  10. Gee, A.: Class fields by Shimura reciprocity, Ph.D. thesis, Leiden University available online athttp://www.math.leidenuniv.nl/nl/theses/44 (2001)

  11. Gee, A., Stevenhagen, P.: Generating class fields using Shimura reciprocity. In: Buhler, J.P. (ed.) Algorithmic Number Theory (Portland, OR, 1998). Lecture Notes in Computer Science, vol. 1423, pp. 441–453. Springer, Berlin (1998). MR MR1726092 (2000m:11112)

    Google Scholar 

  12. Glasby, S.P., Howlett, R.B.: Writting representatations over minimal fields. Commun. Algebra25(6), 1703–1711 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hart, W.B.: Schläfli modular equations for generalized Weber functions. Ramanujan J.15(3), 435–468 (2008)

    Google Scholar 

  14. Kemper, G., Steel, A.: Some algorithms in invariant theory of finite groups. In: Dräxler, P., Michler, G.O., Ringel, C.M. (eds.) Computational Methods for Representations of Groups and Algebras, Euroconference in Essen. Progress in Mathematics, vol. 173. Birkhäuser, Basel (1997)

    Google Scholar 

  15. Konstantinou, E., Kontogeorgis, A., Stamatiou, Y.C., Zaroliagis, C.: Generating prime order elliptic curves: difficulties and efficiency considerations. In: International Conference on Information Security and Cryptology – ICISC 2004. Lecture Notes in Computer Science, vol. 3506, pp. 261–278. Springer, Berlin (2005)

    Google Scholar 

  16. Konstantinou, E., Kontogeorgis, A.: Computing polynomials of the Ramanujant n class invariants. Can. Math. Bull.52(4), 583–597 (2009). MR MR2567152

    Google Scholar 

  17. Konstantinou, E., Kontogeorgis, A.: Introducing Ramanujan’s class polynomials in the generation of prime order elliptic curves. Comput. Math. Appl.59(8), 2901–2917 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Konstantinou, E., Kontogeorgis, A.: Ramanujan invariants for discriminants equivalent to 5 mod 24. Int. J. Number Theory8(1), 265–287

    Google Scholar 

  19. Kontogeorgis, A.: Constructing class invariants. Math. Comput.83(287), 1477–1488 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lay, G.J., Zimmer, H.G.: Constructing elliptic curves with given group order over large finite fields. In: Algorithmic Number Theory Symposium I. Springer Lecture Notes in Computer Science. Springer, Berlin (1994)

    Book  Google Scholar 

  21. Morain, F.: Modular curves and class. LMS Durham Symposium on Computational Number Theory (2000)

    Google Scholar 

  22. Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  23. Schertz, R.: Weber’s class invariants revisited. J. Théor. Nombres Bordeaux4, 325–343 (2002). (MR1926005)

    Google Scholar 

  24. Shimura G.: Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ (1994). Reprint of the 1971 original, Kano Memorial Lectures, 1. MR MR1291394 (95e:11048)

    Google Scholar 

  25. Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1986)

    Google Scholar 

  26. Stevenhagen, P.: Hilbert’s 12th problem, complex multiplication and Shimura reciprocity. In: Class Field Theory—Its Centenary and Prospect (Tokyo, 1998). Advanced Studies in Pure Mathematics, vol. 30, pp. 161–176, Mathematical Society of Japan, Tokyo (2001). MR MR 18464571 (2002i:11110)

    Google Scholar 

  27. Weber, H.: Lehrbuch der Algebra, Band III, 2nd edition, Chelsea reprint, original edition 1908

    Google Scholar 

  28. Yui, N., Zagier, Don.: On the singular values of Weber modular functions. Math. Comput. Am. Math. Soc.66(220), 1645–1662 (1997). MR MR1415803 (99i:11046)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisavet Konstantinou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Konstantinou, E., Kontogeorgis, A. (2015). Revisiting the Complex Multiplication Method for the Construction of Elliptic Curves. In: Daras, N., Rassias, M. (eds) Computation, Cryptography, and Network Security. Springer, Cham. https://doi.org/10.1007/978-3-319-18275-9_12

Download citation

Publish with us

Policies and ethics