Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Analogues of Hermite–Hadamard Type Inequalities for Generalized Convexity

  • Chapter
Computation, Cryptography, and Network Security

Abstract

In this chapter, we discuss quantum calculus and generalized convexity. We briefly discuss some basic concepts and results regarding quantum calculus. Some quantum analogues of derivatives and integrals on finite intervals are discussed. After this we move towards generalized convexity. Examples are given to illustrate the importance and significance of generalized convex sets and generalized convex functions. We establish some quantum Hermite–Hadamard inequalities for generalized convexity. Results proved in this paper may stimulate further research activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Salam, W.A.: q-Bernoulli numbers and polynomials. Math. Nachr. 17, 239260 (1959)

    Google Scholar 

  2. Al-Salam, W.A.: Operational representations for the Laguerre and other polynomials. Duke Math. J. 31, 127142 (1964)

    Article  MathSciNet  Google Scholar 

  3. Al-Salam, W.A.: Saalschützian theorems for basic double series. J. Lond. Math. Soc. 40, 455458 (1965)

    MathSciNet  Google Scholar 

  4. Al-Salam, W.A.: q-Appell polynomials. Ann. Mat. Pura Appl. 77(4), 3145 (1967)

    Google Scholar 

  5. Al-Salam, N.A.: On some q-operators with applications. Nederl. Akad. Wetensch. Indag. Math. 51(1), 113 (1989)

    MathSciNet  Google Scholar 

  6. Al-Salam, W.A., Carlitz, L.: Some orthogonal q-polynomials. Math. Nachr. 30, 4761 (1965)

    Article  MathSciNet  Google Scholar 

  7. Alzer, H.: Sharp bounds for the ratio of q-gamma functions. Math. Nachr. 222, 514 (2001)

    Article  MathSciNet  Google Scholar 

  8. Cristescu, G., Găianu, M.: Shape properties of Noor’s convex sets. In: Proceedings of the 12th Symposium of Mathematics and Its Applications, Timioara, 5–7 Nov 2009, pp. 91–100

    Google Scholar 

  9. Cristescu, G., Gianu, M.: Detecting the non-convex sets with Youness and Noor types convexities. Bul. Stiinṭ. Univ. Politeh. Timiş. Ser. Mat.-Fiz. 55(69), 1, 20–27 (2010)

    Google Scholar 

  10. Cristescu, G., Lupsa, L.: Non-connected Convexities and Applications. Kluwer Academic Publishers, Dordrecht/Holland (2002)

    Book  MATH  Google Scholar 

  11. Cristescu, G., Noor, M.A., Awan, M.U.: Bounds of the second degree cumulative frontier gaps of functions with generalized convexity. Carpath. J. Math. 31(2), 173–180 (2015)

    Google Scholar 

  12. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. Victoria University, Melbourne (2000)

    Google Scholar 

  14. Ernst, T.: The history of q-calculus and a new method. U.U.D.M. Report 2000:16, ISSN 1101-3591. Department of Mathematics, Uppsala University (2000)

    Google Scholar 

  15. Ernst, T.: A new method for q-calculus. Uppsala Dissertations (2002)

    Google Scholar 

  16. Ernst, T.: A method for q-calculus. J. Nonlinear Math. Phys. 10(4), 487–525 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ernst, T.: A Comprehensive Treatment of q-Calculus. Springer, Basel/Heidelberg/New York/ Dordrecht/London (2014)

    Google Scholar 

  18. Gauchman, H.: Integral inequalities in q-calculus. Comput. Math. Appl. 47, 281–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ion, D.A.: Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova. Math. Comput. Sci. Ser. 34, 82–87 (2007)

    MathSciNet  Google Scholar 

  20. Jackson, F.H.: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253281 (1908)

    Google Scholar 

  21. Jackson, F.H.: On a q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  22. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Book  MATH  Google Scholar 

  23. Mitrinovic, D.S., Lackovic, I.: Hermite and convexity. Aequationes Math. 28, 229232 (1985)

    Article  MathSciNet  Google Scholar 

  24. Niculescu, C.P., Persson, L.-E.: Convex Functions and Their Applications: A Contemporary Approach. CMS Books in Mathematics, vol. 23. Springer, New York (2006)

    Google Scholar 

  25. Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217229 (2000)

    Article  Google Scholar 

  26. Noor, M.A.: On some characterizations of nonconvex functions. Nonlinear Anal. Forum 12(2), 193–201 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Noor, M.A.: Differentiable non-convex functions and general variational inequalities. Appl. Math. Comput. 199, 623–630 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Noor, M.A., Awan, M.U., Noor, K.I.: On some inequalities for relative semi-convex functions. J. Inequal. Appl. 2013, 332 (2013)

    Google Scholar 

  29. Noor, M.A., Noor, K.I., Awan, M.U.: Geometrically relative convex functions. Appl. Math. Inf. Sci. 8(2), 607–616 (2014)

    Article  MathSciNet  Google Scholar 

  30. Noor, M.A., Noor, K.I., Awan, M.U.: Generalized convexity and integral inequalities. Appl. Math. Inf. Sci. 9(1), 233–243 (2015)

    Article  MathSciNet  Google Scholar 

  31. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 251, 675–579 (2015)

    Article  MathSciNet  Google Scholar 

  32. Noor, M.A., Postolache, M., Noor, K.I., Awan, M.U.: Geometrically nonconvex functions and integral inequalities. Appl. Math. Inf. Sci. 9(3), 1273–1282 (2015)

    MathSciNet  Google Scholar 

  33. Ogunmez, H., Ozkan, U.M.: Fractional quantum integral inequalities. J. Inequal. Appl. 2011 (2011). Article ID 787939

    Google Scholar 

  34. Ozdemir, M.E.: On Iyengar-type inequalities via quasi-convexity and quasi-concavity. arXiv:1209.2574v1 [math.FA] (2012)

    Google Scholar 

  35. Pearce, C.E.M., Pecaric, J.E.: Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 13, 51–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pecaric, J.E., Prosch, F., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic, New York (1992)

    MATH  Google Scholar 

  37. Rajkovic, P.M., Stankovic, M.S., Marinkovic, S.D.: The Zeros of Polynomials Orthoganal with Respect to q-Integral on Several Intervals in the Complex Plane, pp. 178–188. Softex, Sofia (2004)

    Google Scholar 

  38. Taf, S., Brahim, K., Riahi, L.: Some results for Hadamard-type inequalities in quantum calculus. LE Mat. LXIX, 243–258 (2014)

    Google Scholar 

  39. Tariboon, J., Ntouyas, S.K.: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282 (2013)

    Google Scholar 

  40. Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121 (2014)

    Google Scholar 

  41. Youness, E.A.: E-convex sets, E-convex functions, and Econvex programming. J. Optim. Theory Appl. 102, 439–450 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratitude to Prof. Dr. Themistocles M. Rassias for his kind invitation. The authors also would like to thank Dr. S.M. Junaid Zaidi, Rector, COMSATS Institute of Information Technology, Pakistan, for providing excellent research and academic environment. This research is supported by HEC NRPU project No: 20-1966/R&D/11-2553.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aslam Noor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Noor, M.A., Noor, K.I., Awan, M.U. (2015). Quantum Analogues of Hermite–Hadamard Type Inequalities for Generalized Convexity. In: Daras, N., Rassias, M. (eds) Computation, Cryptography, and Network Security. Springer, Cham. https://doi.org/10.1007/978-3-319-18275-9_18

Download citation

Publish with us

Policies and ethics