Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Leveraging Network Dynamics for Improved Link Prediction

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2016)

Abstract

The aim of link prediction is to forecast connections that are most likely to occur in the future, based on examples of previously observed links. A key insight is that it is useful to explicitly model network dynamics, how frequently links are created or destroyed when doing link prediction. In this paper, we introduce a new supervised link prediction framework, RPM (Rate Prediction Model). In addition to network similarity measures, RPM uses the predicted rate of link modifications, modeled using time series data; it is implemented in Spark-ML and trained with the original link distribution, rather than a small balanced subset. We compare the use of this network dynamics model to directly creating time series of network similarity measures. Our experiments show that RPM, which leverages predicted rates, outperforms the use of network similarity measures, either individually or within a time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newslett. 7(2), 3–12 (2005)

    Article  Google Scholar 

  3. Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: IEEE International Conference on Data Mining, pp. 322–331 (2007)

    Google Scholar 

  4. Huang, Z., Lin, D.K.: The time-series link prediction problem with applications in communication surveillance. INFORMS J. Comput. 21(2), 286–303 (2009)

    Article  Google Scholar 

  5. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Potgieter, A., April, K.A., Cooke, R.J., Osunmakinde, I.O.: Temporality in link prediction: Understanding social complexity. Emergence Complex. Organ. (E: CO) 11(1), 69–83 (2009)

    Google Scholar 

  7. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the International Conference on Information and Knowledge Management, pp. 556–559 (2003)

    Google Scholar 

  8. Soares, P.R.D.S., Prudêncio, R.B.C.: Time series based link prediction. In: International Joint Conference on Neural Networks, IEEE, pp. 1–7 (2012)

    Google Scholar 

  9. Cohen, W.W.: Enron email dataset (2009). http://www.cs.cmu.edu/enron/

  10. Hajibagheri, A., Lakkaraju, K., Sukthankar, G., Wigand, R.T., Agarwal, N.: Conflict and communication in massively-multiplayer online games. In: Agarwal, N., Kevin, X., Osgood, N. (eds.) Social Computing, Behavioral-Cultural Modeling, and Prediction. LNCS, pp. 65–74. Springer, Heidelberg (2015)

    Google Scholar 

  11. Wang, X., Sukthankar, G.: Link prediction in heterogeneous collaboration networks. In: Missaoui, R., Sarr, I. (eds.) Social Network Analysis: Community Detection and Evolution. Lecture Notes in Social Networks, pp. 165–192. Springer, Heidelberg (2014)

    Google Scholar 

  12. Beigi, G., Tang, J., Liu, H.: Signed link analysis in social media networks. In: International AAAI Conference on Web and Social Media (ICWSM) (2016)

    Google Scholar 

  13. Davoudi, A., Chatterjee, M.: Modeling trust for rating prediction in recommender systems. In: SIAM Workshop on Machine Learning Methods for Recommender Systems, SIAM, pp. 1–8 (2016)

    Google Scholar 

  14. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: Proceedings of the SDM Workshop on Link Analysis, Counterterrorism and Security (2006)

    Google Scholar 

  15. Wang, X., Sukthankar, G.: Link prediction in multi-relational collaboration networks. In: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Niagara Falls, Canada, pp. 1445–1447, August 2013

    Google Scholar 

  16. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 243–252. ACM (2010)

    Google Scholar 

  17. Lü, L., Zhou, T.: Role of weak ties in link prediction of complex networks. In: Proceedings of the ACM International Workshop on Complex networks Meet Information & Knowledge Management, pp. 55–58. ACM (2009)

    Google Scholar 

  18. Murata, T., Moriyasu, S.: Link prediction based on structural properties of online social networks. New Gener. Comput. 26(3), 245–257 (2008)

    Article  Google Scholar 

  19. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)

    Article  Google Scholar 

  20. Barabási, A.L., et al.: Scale-free networks: a decade and beyond. Science 325(5939), 412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2005)

    Google Scholar 

  22. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  23. Snijders, T., van de Bunt, G., Steglich, C.E.G.: Introduction to actor-based models for network dynamics. Soc. Netw. 32, 44–60 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Research at University of Central Florida was supported with an internal Reach for the Stars award. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gita Sukthankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hajibagheri, A., Sukthankar, G., Lakkaraju, K. (2016). Leveraging Network Dynamics for Improved Link Prediction. In: Xu, K., Reitter, D., Lee, D., Osgood, N. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2016. Lecture Notes in Computer Science(), vol 9708. Springer, Cham. https://doi.org/10.1007/978-3-319-39931-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39931-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39930-0

  • Online ISBN: 978-3-319-39931-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics