Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Moving Object Detection with ViBe and Texture Feature

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9916))

Included in the following conference series:

Abstract

In the field of computer vision, moving object detection in complicated environments is challenging. This study proposes a moving target detecting algorithm combining ViBe and spatial information to address the poor adaptability of ViBe in complex scenes. The CSLBP texture descriptor was improved to more accurately describe background features. An adaptive threshold was introduced, and thresholding on absolute difference was applied to obtain binary string descriptors using comparisons of pixels from the same region or different images. Afterwards, by adding spatial features to ViBe, a background model based on color and texture feature was obtained. Experimental results show that the proposed method addresses the deficiency of ViBe’s feature representation and improves its adaptability in complex video scenes with shadow, background interference and slow-moving targets. This adaptability allows the precision of detection to improve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaohui, Z., Xiaohui, D., Shuoyu, X., et al.: An improved moving object detection algorithm based on frame difference and edge detection. In: Fourth International Conference on Image and Graphics, ICIG 2007, pp. 519–523. IEEE (2007)

    Google Scholar 

  2. Horn, B.K.P., Schunck, B.G.: determining optical flow. Artif. Intell. 17(81), 185–203 (2004)

    Google Scholar 

  3. Lucia, M., Alfredo, P.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bilodeau, G.A., Jodoin, J.P., Saunier, N.: Change detection in feature space using local binary similarity patterns. In: International Conference on Computer & Robot Vision. IEEE Computer Society, pp. 106–112 (2013)

    Google Scholar 

  5. Wren, C.R., Azarbayejani, A., Darrell, T., et al.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  6. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of Cvpr, vol. 2, pp. 22-46 (1999)

    Google Scholar 

  7. Elgammal, A., Duraiswami, R., Harwood, D., et al.: Background and foreground modeling using non-parametric kernel density estimation for visual surveillance KDE. Proc. IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

  8. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp. 38–43 (2012)

    Google Scholar 

  9. Marko, H., Matti, P.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  10. Barnich, O., Vanogenbroeck, M.: ViBE: a powerful random technique to estimate the background in video sequences. In: IEEE International Conference on Acoustics, Speech & Signal Processing, pp. 945–948 (2009)

    Google Scholar 

  11. Olivier, B., Marc, V.: ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. A Publ. IEEE Sig. Process. Soc. 20(6), 1709–1724 (2011)

    Article  MathSciNet  Google Scholar 

  12. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with center-symmetric local binary patterns. In: Kalra, Prem, K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 58–69. Springer, Heidelberg (2006). doi:10.1007/11949619_6

    Chapter  Google Scholar 

  13. Liao, S., Zhao, G., Kellokumpu, V., et al.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1301–1306. IEEE (2010)

    Google Scholar 

Download references

Acknowledgments

This paper was supported by the NSFC under grant 61303034, the Aeronautical Science Foundation of China under grant 2013ZD31007, and Science and technology project of Shaanxi province (Grant No. 2016GY-033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peipei Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tian, Y., Wang, D., Jia, P., Liu, J. (2016). Moving Object Detection with ViBe and Texture Feature. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48890-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48889-9

  • Online ISBN: 978-3-319-48890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics