Abstract
In this paper, we propose a method to estimate object viewpoint from a single RGB image and address two problems in estimation: generating training data with viewpoint annotations and extracting powerful features for the estimation. We first collect 1780 high quality 3D CAD object models of 3 categories. Then we generate a synthetic RGB image dataset with viewpoint annotations, in which each image is generated by placing one model in a realistic panorama scene and rendering the model with a random camera parameters. We train a CNN model on our synthetic dataset to predict the object viewpoint. The proposed method is evaluated on PASCAL 3D+ dataset and our synthetic dataset. The experiment results show good performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Navon, D.: Forest before trees: the precedence of global features in visual perception. Cogn. Psychol. 9(3), 353–383 (1977)
Xiang, Y., Mottaghi, R., Savarese, S.: Beyond PASCAL: a benchmark for 3d object detection in the wild. In: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 75–82. IEEE (2014)
Gu, C., Ren, X.: Discriminative mixture-of-templates for viewpoint classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 408–421. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_30
Tulsiani, S., Malik, J.: Viewpoints and keypoints. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1510–1519. IEEE (2015)
Herdtweck, C., Curio, C.: Monocular car viewpoint estimation with circular regression forests. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 403–410. IEEE (2013)
Fidler, S., Dickinson, S., Urtasun, R.: 3d object detection and viewpoint estimation with a deformable 3d cuboid model. In: Advances in Neural Information Processing Systems, pp. 611–619 (2012)
Payet, N., Todorovic, S.: From contours to 3d object detection and pose estimation. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 983–990. IEEE (2011)
Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 213–220. IEEE (2009)
Mottaghi, R., Xiang, Y., Savarese, S.: A coarse-to-fine model for 3d pose estimation and sub-category recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 418–426. IEEE (2015)
Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using cnns trained with rendered 3d model views. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2686–2694 (2015)
Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)
Nevatia, R., Binford, T.O.: Description and recognition of curved objects. Artif. Intell. 8(1), 77–98 (1977)
Peng, X., Sun, B., Ali, K., Saenko, K.: Exploring invariances in deep convolutional neural networks using synthetic images. CoRR, abs/1412.7122, vol. 2 (2014)
Gupta, S., Arbeláez, P., Girshick, R., Malik, J.: Inferring 3d object pose in RGB-D images. arXiv preprint arXiv:1502.04652 (2015)
Lim, J.J., Khosla, A., Torralba, A.: FPM: fine pose parts-based model with 3D CAD models. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 478–493. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10599-4_31
Aubry, M., Maturana, D., Efros, A., Russell, B., Sivic, J.: Seeing 3d chairs: exemplar part-based 2d–3d alignment using a large dataset of cad models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3762–3769 (2014)
Stark, M., Goesele, M., Schiele, B.: Back to the future: learning shape models from 3d cad data. In: BMVC, vol. 2, p. 5 (2010)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)
Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)
Juranek, R., Herout, A., Dubska, M., Zemcik, P.: Real-time pose estimation piggybacked on object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2381–2389 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)
Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4511–4520 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Wang, Y., Li, S., Jia, M., Liang, W. (2016). Viewpoint Estimation for Objects with Convolutional Neural Network Trained on Synthetic Images. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-48896-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48895-0
Online ISBN: 978-3-319-48896-7
eBook Packages: Computer ScienceComputer Science (R0)