Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Viewpoint Estimation for Objects with Convolutional Neural Network Trained on Synthetic Images

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9917))

Included in the following conference series:

Abstract

In this paper, we propose a method to estimate object viewpoint from a single RGB image and address two problems in estimation: generating training data with viewpoint annotations and extracting powerful features for the estimation. We first collect 1780 high quality 3D CAD object models of 3 categories. Then we generate a synthetic RGB image dataset with viewpoint annotations, in which each image is generated by placing one model in a realistic panorama scene and rendering the model with a random camera parameters. We train a CNN model on our synthetic dataset to predict the object viewpoint. The proposed method is evaluated on PASCAL 3D+ dataset and our synthetic dataset. The experiment results show good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Navon, D.: Forest before trees: the precedence of global features in visual perception. Cogn. Psychol. 9(3), 353–383 (1977)

    Article  Google Scholar 

  2. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond PASCAL: a benchmark for 3d object detection in the wild. In: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 75–82. IEEE (2014)

    Google Scholar 

  3. Gu, C., Ren, X.: Discriminative mixture-of-templates for viewpoint classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 408–421. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_30

    Chapter  Google Scholar 

  4. Tulsiani, S., Malik, J.: Viewpoints and keypoints. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1510–1519. IEEE (2015)

    Google Scholar 

  5. Herdtweck, C., Curio, C.: Monocular car viewpoint estimation with circular regression forests. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 403–410. IEEE (2013)

    Google Scholar 

  6. Fidler, S., Dickinson, S., Urtasun, R.: 3d object detection and viewpoint estimation with a deformable 3d cuboid model. In: Advances in Neural Information Processing Systems, pp. 611–619 (2012)

    Google Scholar 

  7. Payet, N., Todorovic, S.: From contours to 3d object detection and pose estimation. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 983–990. IEEE (2011)

    Google Scholar 

  8. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 213–220. IEEE (2009)

    Google Scholar 

  9. Mottaghi, R., Xiang, Y., Savarese, S.: A coarse-to-fine model for 3d pose estimation and sub-category recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 418–426. IEEE (2015)

    Google Scholar 

  10. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using cnns trained with rendered 3d model views. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2686–2694 (2015)

    Google Scholar 

  11. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  12. Nevatia, R., Binford, T.O.: Description and recognition of curved objects. Artif. Intell. 8(1), 77–98 (1977)

    Article  MATH  Google Scholar 

  13. Peng, X., Sun, B., Ali, K., Saenko, K.: Exploring invariances in deep convolutional neural networks using synthetic images. CoRR, abs/1412.7122, vol. 2 (2014)

    Google Scholar 

  14. Gupta, S., Arbeláez, P., Girshick, R., Malik, J.: Inferring 3d object pose in RGB-D images. arXiv preprint arXiv:1502.04652 (2015)

  15. Lim, J.J., Khosla, A., Torralba, A.: FPM: fine pose parts-based model with 3D CAD models. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 478–493. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10599-4_31

    Google Scholar 

  16. Aubry, M., Maturana, D., Efros, A., Russell, B., Sivic, J.: Seeing 3d chairs: exemplar part-based 2d–3d alignment using a large dataset of cad models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3762–3769 (2014)

    Google Scholar 

  17. Stark, M., Goesele, M., Schiele, B.: Back to the future: learning shape models from 3d cad data. In: BMVC, vol. 2, p. 5 (2010)

    Google Scholar 

  18. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  19. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  20. Juranek, R., Herout, A., Dubska, M., Zemcik, P.: Real-time pose estimation piggybacked on object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2381–2389 (2015)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  23. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4511–4520 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wang, Y., Li, S., Jia, M., Liang, W. (2016). Viewpoint Estimation for Objects with Convolutional Neural Network Trained on Synthetic Images. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48896-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48895-0

  • Online ISBN: 978-3-319-48896-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics