Abstract
This chapter presents an introduction to combinatorial optimisation in the context of the high-level modelling platform, Numberjack. The process of developing an effective model for a combinatorial problem is presented, along with details on how such problems can be solved using three of the most prominent solution paradigms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Tourbier, Y., Oplobedu, A., Marcovitch, J., CHARME: un langage industriel de programmation par contraintes, illustr par une application chez Renault. In: Proceedings of the Ninth International Workshop on Expert Systems and their Applications, pp. 55–70 (1989)
Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. In: JFPL 1992, 1éres Journées Francophones de Programmation Logique, p. 51 (1992)
Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 232–238 (2015)
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7_14
Babai, L.: Monte-carlo algorithms in graph isomorphism testing. Technical report DMS 79–10, Université de Montréal (1979)
Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. Technical report SICS-T 2005/08-SE (2005)
Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global constraints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_4
Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_13
Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming, pp. 29–83 (2006)
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, pp. 146–150 (2004)
Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 108–123. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18008-3_8
Coletta, R., Bessiére, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_58
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)
Costas, J.P.: A study of a class of detection waveforms having nearly ideal range - doppler ambiguity properties. Proc. IEEE 72(8), 996–1009 (1984)
Dooms, G.: The CP(Graph) computation domain in constraint programming. Ph.D. thesis, Université catholique de Louvain, Faculté des sciences appliquées (2006)
Fages, J.-G.: Exploitation de structures de graphe en programmation par contraintes. (On the use of graphs within constraint-programming). Ph.D. thesis, École des mines de Nantes, France (2014)
Fitzgerald, T., Malitsky, Y., O’Sullivan, B., Tierney, K.: ReACT: real-time algorithm configuration through tournaments. In: Proceedings of the Seventh Annual Symposium on Combinatorial Search, SOCS 2014 (2014)
Freuder, E.C.: In pursuit of the holy grail. Constraints 2(1), 57–61 (1997)
Freuder, E.C., O’Sullivan, B.: Grand challenges for constraint programming. Constraints 19(2), 150–162 (2014)
Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: a constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)
Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems. In: Proceedings of the 10th European Conference on Artificial Intelligence, ECAI 1992, pp. 31–35. Wiley (1992)
Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N.C.A., Nightingale, P., Petrie, K.E.: Learning when to use lazy learning in constraint solving. In: Proceedings of the 19th European Conference on Artificial Intelligence, ECAI 2010, pp. 873–878 (2010)
Gervet, C.: Set intervals in constraint-logic programming: definition and implementation of a language. Ph.D. thesis, Université de France-Compté (1995)
Gomes, C.P., Sabharwal, A.: Exploiting runtime variation in complete solvers. In: Handbook of Satisfiability, pp. 271–288 (2009)
Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1–2), 67–100 (2000)
Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomization. In: Proceedings of the 15th National Conference on Artificial Intelligence, AAAI 1998, pp. 431–437 (1998)
Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14(3), 263–313 (1980)
Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint programming and combinatorial optimisation in numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13520-0_22
Van Hentenryck, P., Carillon, J.-P., Generality versus specificity: an experience with AI and OR techniques. In: Proceedings of the 7th National Conference on Artificial Intelligence, AAAI 1988, pp. 660–664 (1988)
Hnich, B.: CSPLib problem 034: Warehouse location problem. http://www.csplib.org/Problems/prob034
Hulubei, T., O’Sullivan, B.: The impact of search heuristics on heavy-tailed behaviour. Constraints 11(2–3), 159–178 (2006)
Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical portfolio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 301–317. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07046-9_22
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40
Kotthoff, L., Gent, I.P., Miguel. I.: A preliminary evaluation of machine learning in algorithm selection for search problems. In: Proceedings of the 4th Annual Symposium on Combinatorial Search, SOCS 2011 (2011)
Laurière, J.-L.: A language and a program for stating and solving combinatorial problems. Artif. Intell. 10(1), 29–127 (1978)
Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993)
Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)
Mehta, D., O’Sullivan, B., Kotthoff, L., Malitsky, Y.: Lazy branching for constraint satisfaction. In: Proceedings of the 25th International Conference on Tools with Artificial Intelligence, ICTAI 2013, pp. 1012–1019 (2013)
Mehta, D., O’Sullivan, B., Quesada, L., Ruffini, M., Payne, D.B., Doyle, L.: Designing resilient long-reach passive optical networks. In: Proceedings of the 23rd Conference on Innovative Applications of Artificial Intelligence, IAAI 2011 (2011)
Murty, K.G.: Linear Programming. Wiley, Hoboken (1983)
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_38
O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)
Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_41
Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: Proceedings of the 12th National Conference on Artificial Intelligence, AAAI 1994, pp. 362–367 (1994)
Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of the 8th Innovative Applications of Artificial Intelligence Conference, IAAI 1996, pp. 209–215 (1996)
Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier, New York (2006)
Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of the 11th European Conference on Artificial Intelligence, ECAI 1994, pp. 125–129. Springer, Heidelberg (1994)
Simonin, G., Artigues, C., Hebrard, E., Lopez, P.: Scheduling scientific experiments on the rosetta/philae mission. In: Milano, M. (ed.) Principles and Practice of Constraint Programming. LNCS, vol. 7514, pp. 23–37. Springer, Heidelberg (2012)
Simonis, H.: Constraint applications in networks. In: Handbook of Constraint Programming, pp. 875–903 (2006)
Simonis, H.: Models for global constraint applications. Constraints 12(1), 63–92 (2007)
van Beek, P.: CSPLib problem 006: Golomb rulers. http://www.csplib.org/Problems/prob006
van Hoeve, W.-J., Katriel, I.: Global constraints. In: Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2, pp. 169–208. Elsevier (2006)
Wallace, M.: Practical applications of constraint programming. Constraints 1(1/2), 139–168 (1996)
Walsh, T.: Search in a small world. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, IJCAI 1999, pp. 1172–1177 (1999)
Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York (1998)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)
Yip, Y.K.J.: The length-lex representation for constraint programming over sets. Ph.D. thesis, Brown University (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Hurley, B., O’Sullivan, B. (2016). Introduction to Combinatorial Optimisation in Numberjack. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O'Sullivan, B., Pedreschi, D. (eds) Data Mining and Constraint Programming. Lecture Notes in Computer Science(), vol 10101. Springer, Cham. https://doi.org/10.1007/978-3-319-50137-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-50137-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50136-9
Online ISBN: 978-3-319-50137-6
eBook Packages: Computer ScienceComputer Science (R0)