Abstract
First-order secure Threshold Implementations (TI) of symmetric cryptosystems provide provable security at a moderate overhead; yet attacks using higher-order statistical moments are still feasible. Cryptographic instances compliant to Higher-Order Threshold Implementation (HO-TI) can prevent such attacks, however, usually at unacceptable implementation costs. As an alternative concept we investigate in this work the idea of dynamic hardware modification, i.e., random changes and transformations of cryptographic implementations in order to render higher-order attacks on first-order TI impractical. In a first step, we present a generic methodology which can be applied to (almost) every cryptographic implementation. In order to investigate the effectiveness of our proposed strategy, we use an instantiation of our methodology that adapts ideas from White-Box Cryptography and applies this construction to a first-order secure TI. Further, we show that dynamically updating cryptographic implementations during operation provides the ability to avoid higher-order leakages to be practically exploitable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Given for instance a linear operation within a cryptographic implementation (e.g., MixColumns of the AES algorithm) and the application of linear encoding functions would allow to keep encoded intermediate values. However, the decoding function then has to consider the inversion of the linear operation as well.
References
Side-Channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/SAKURA/index.html
Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_4
Beyne, T., Bilgin, B.: Uniform First-Order Threshold Implementations. Cryptology ePrint Archive, Report 2016/715 (2016). http://eprint.iacr.org/2016/715
Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_18
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_31
Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: A white-box DES implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003). doi:10.1007/978-3-540-44993-5_1
Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). doi:10.1007/3-540-36492-7_17
Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7_13
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5_9
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)
Mentens, N., Gierlichs, B., Verbauwhede, I.: Power and fault analysis resistance in hardware through dynamic reconfiguration. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 346–362. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_22
Moradi, A., Mischke, O.: Comprehensive evaluation of AES dual ciphers as a side-channel countermeasure. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 245–258. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02726-5_18
Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_23
Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308_38
Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)
Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)
Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_37
Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application to tightening threshold implementations. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 263–276. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31301-6_16
Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_25
Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J. Cryptogr. Eng. 6(2), 85–99 (2016)
Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4_44
Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International Conference on Computer Science and its Applications (2009)
Acknowledgment
This work has been co-funded by the Commission of the European Communities through the Horizon 2020 program under project number 645622 PQCRYPTO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sasdrich, P., Moradi, A., Güneysu, T. (2017). Hiding Higher-Order Side-Channel Leakage. In: Handschuh, H. (eds) Topics in Cryptology – CT-RSA 2017. CT-RSA 2017. Lecture Notes in Computer Science(), vol 10159. Springer, Cham. https://doi.org/10.1007/978-3-319-52153-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-52153-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52152-7
Online ISBN: 978-3-319-52153-4
eBook Packages: Computer ScienceComputer Science (R0)