Abstract
White matter hyperintensities (WHM) are characteristics of various brain diseases, so automated detection tools have a broad clinical spectrum. Deep learning architectures have been recently very successful for the segmentation of brain lesions, such as ictus or tumour lesions. We propose a Convolutional Neural Network composed of four parallel data paths whose input is a mixture of 2D/3D windows extracted from multimodal magnetic resonance imaging of the brain. The architecture is lighter than others proposed in the literature for lesion detection so its training is faster. We carry out computational experiments on a dataset of multimodal imaging from 18 subjects, achieving competitive results with state of the art approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Admiraal-Behloul, F., van den Heuvel, D., Olofsen, H., van Osch, M., van der Grond, J., van Buchem, M., Reiber, J.: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. NeuroImage 28(3), 607–617 (2005). http://www.sciencedirect.com/science/article/pii/S105381190500460X
de Brébisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 20–28, June 2015
Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_1
Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)
Debette, S., Markus, H.S.: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010). http://www.bmj.com/content/341/bmj.c3666
Erihov, M., Alpert, S., Kisilev, P., Hashoul, S.: A cross saliency approach to asymmetry-based tumor detection. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 636–643. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_76
Gao, X.W., Hui, R., Tian, Z.: Classification of ct brain images based on deep learning networks. Comput. Methods Programs Biomed. 138, 49–56 (2017)
Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 57(2), 378–390 (2011). http://www.sciencedirect.com/science/article/pii/S1053811911003740
Grueter, B.E.: S.U.G.: age-related cerebral white matter disease (leukoaraiosis): a review. Postgrad. Med. J. 88, 79–87 (2012)
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). http://www.sciencedirect.com/science/article/pii/S1361841516300330
Iorio, M., Spalletta, G., Chiapponi, C., Luccichenti, G., Cacciari, C., Orfei, M.D., Caltagirone, C., Piras, F.: White matter hyperintensities segmentation: a new semi-automated method. Front. Aging Neurosci. 5(76) (2013). http://www.frontiersin.org/aging_neuroscience/10.3389/fnagi.2013.00076/abstract
Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Murray, A., Staff, R., Shenkin, S., Deary, I., Starr, J., Whalley, L.: Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237, 251–257 (2005)
Payne, M.E., et al.: Development of a semi-automated method for quantification of MRI gray and white matter lesions in geriatric subjects. Psychiatry Res. Neuroimaging 115(1), 63–77 (2002)
Pelletier, A., Periot, O., Dilharreguy, B., Hiba, B., Bordessoules, M., Chanraud, S., Pérés, K., Amieva, H., Dartigues, J., Allard, M., Catheline, G.: Age-related modifications of diffusion tensor imaging parameters and white matter hyperintensities as inter-dependent processes. Front. Aging Neurosci. 7(255) (2016). http://www.frontiersin.org/aging_neuroscience/10.3389/fnagi.2015.00255/abstract
Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Cham (2016). doi:10.1007/978-3-319-30858-6_12
Price, C., Mitchell, S., Brumback, B., Tanner, J., Lamar, I.S.M., Giovannetti, T., Heilman, K., Libon, D.: MRI-leukoaraiosis thresholds and the phenotypic expression of dementia. Neurology 79(8), 734–740 (2012)
Schwarz, C., Fletcher, E., DeCarli, C., Carmichael, O.: Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. Inf. Process. Med. Imaging 21, 239–251 (2009). Proceedings of the Conference
Tuladhar, A.M., van Dijk, E., Zwiers, M.P., van Norden, A.G., de Laat, K.F., Shumskaya, E., Norris, D.G., de Leeuw, F.E.: Structural network connectivity and cognition in cerebral small vessel disease. Hum. Brain Mapp. 37(1), 300–310 (2016). http://dx.doi.org/10.1002/hbm.23032
Tustison, N., Wintermark, M., Durst, C., Avants, B.: Ants and árboles. In: MICCAI BraTS Workshop. Miccai Society, Nagoya (2013)
Uchiyama, Y., Kunieda, T., Hara, T., Fujita, H., Ando, H., Yamakawa, H., Asano, T., Kato, H., Iwama, T., Kanematsu, M., Hoshi, H.: Automatic segmentation of different-sized leukoaraiosis regions in brain MR images. In: Proceedings of SPIE, vol. 6915, pp. 69151S-1–69151S-8 (2008). http://dx.doi.org/10.1117/12.770045
Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, Winning Contribution, pp. 31–35 (2014)
Yoshita, M., Fletcher, E., Harvey, D., Ortega, M., Martinez, O., Mungas, D.M., Reed, B.R., DeCarli, C.S.: Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 67(12), 2192–2198 (2006). http://www.neurology.org/content/67/12/2192.abstract
Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Roa-Barco, L. et al. (2018). A 2D/3D Convolutional Neural Network for Brain White Matter Lesion Detection in Multimodal MRI. In: Kurzynski, M., Wozniak, M., Burduk, R. (eds) Proceedings of the 10th International Conference on Computer Recognition Systems CORES 2017. CORES 2017. Advances in Intelligent Systems and Computing, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-59162-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-59162-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59161-2
Online ISBN: 978-3-319-59162-9
eBook Packages: EngineeringEngineering (R0)