Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enabling Semantics within Industry 4.0

  • Conference paper
  • First Online:
Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10444))

Abstract

Manufacturing faces increasing requirements from customers which causes the need of exploiting emerging technologies and trends for preserving competitive advantages. The apriori announced fourth industrial revolution (also known as Industry 4.0) is represented mainly by an employment of Internet technologies into industry. The essential requirement is the proper understanding of given CPS (one of the key component of Industry 4.0) data models together with a utilization of knowledge coming from various systems across a factory as well as an external data sources. The suitable solution for data integration problem is an employment of Semantic Web Technologies and the model description in ontologies. However, one of the obstacles to the wider use of the Semantic Web technologies including the use in the industrial automation domain is mainly insufficient performance of available triplestores. Thus, on so called Semantic Big Data Historian use case we are proposing the usage of state of the art distributed data storage. We discuss the approach to data storing and describe our proposed hybrid data model which is suitable for representing time series (sensor measurements) with added semantics. Our results demonstrate a possible way to allow higher performance distributed analysis of data from industrial domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A triplestore is a database for the storage and retrieval of triples through semantic queries.

  2. 2.

    http://www.openrdf.org.

  3. 3.

    http://4store.org.

  4. 4.

    https://code.google.com/p/cumulusrdf/.

  5. 5.

    http://hadoop.apache.org.

  6. 6.

    https://jena.apache.org.

  7. 7.

    http://spark.apache.org.

  8. 8.

    http://cassandra.apache.org.

  9. 9.

    ERP—Enterprise resource planning system.

  10. 10.

    YARN—Yet Another Resource Negotiator.

  11. 11.

    https://hive.apache.org.

  12. 12.

    https://hbase.apache.org.

  13. 13.

    http://mahout.apache.org.

  14. 14.

    https://www.knime.org.

  15. 15.

    https://aws.amazon.com/dynamodb/.

  16. 16.

    https://cloud.google.com/bigtable/.

References

  1. SequenceFile (2009). https://wiki.apache.org/hadoop/SequenceFile

  2. Accumulo (2011). https://accumulo.apache.org

  3. MapReduce (2011). https://wiki.apache.org/hadoop/MapReduce

  4. The Connected Enterprise (2017). http://www.rockwellautomation.com/global/capabilities/connected-enterprise

  5. Aasman, J.: Allegro Graph: RDF Triple Database. Oakland Franz Incorporated, Cidade (2006)

    Google Scholar 

  6. Cao, X., Liu, L., Shen, W., Laha, A., Tang, J., Cheng, Y.: Real-time misbehavior detection and mitigation in cyber-physical systems over WLANs. IEEE Trans. Ind. Inf. 13(1), 186–197 (2017)

    Article  Google Scholar 

  7. Colombo, A.W., Bangemann, T., Karnouskos, S.: A system of systems view on collaborative industrial automation. In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1968–1975. IEEE (2013)

    Google Scholar 

  8. Commission, I.E., et al.: IEC 62541: OPC Unified Architecture (all parts), February 2010

    Google Scholar 

  9. Drath, R., Horch, A.: Industrie 4.0: hit or hype?[industry forum]. IEEE Ind. Electron. Mag. 8(2), 56–58 (2014)

    Article  Google Scholar 

  10. Du, J.-H., Wang, H.-F., Ni, Y., Yu, Y.: HadoopRDF: a scalable semantic data analytical engine. In: Huang, D.-S., Ma, J., Jo, K.-H., Gromiha, M.M. (eds.) ICIC 2012. LNCS, vol. 7390, pp. 633–641. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31576-3_80

    Chapter  Google Scholar 

  11. Girbea, A., Suciu, C., Nechifor, S., Sisak, F.: Design and implementation of a service-oriented architecture for the optimization of industrial applications. IEEE Trans. Ind. Inf. 10(1), 185–196 (2014)

    Article  Google Scholar 

  12. Group, I.W., et al.: Recommendations for implementing the strategic initiative industrie 4.0. Final report, April 2013

    Google Scholar 

  13. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage (2003)

    Google Scholar 

  14. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937. IEEE (2016)

    Google Scholar 

  15. Husain, M., McGlothlin, J., Masud, M.M., Khan, L., Thuraisingham, B.M.: Heuristics-based query processing for large RDF graphs using cloud computing. IEEE Trans. Knowl. Data Eng. 23(9), 1312–1327 (2011)

    Article  Google Scholar 

  16. Jirkovsky, V., Obitko, M., Marik, V.: Understanding data heterogeneity in the context of cyber-physical systems integration. IEEE Trans. Ind. Inf. 13(2), 660–667 (2017)

    Article  Google Scholar 

  17. Kolas, D., Emmons, I., Dean, M.: Efficient linked-list RDF indexing in parliament. SSWS 9, 17–32 (2009)

    Google Scholar 

  18. Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016)

    Article  Google Scholar 

  19. Obitko, M., Jirkovský, V.: Big data semantics in industry 4.0. In: Mařík, V., Schirrmann, A., Trentesaux, D., Vrba, P. (eds.) HoloMAS 2015. LNCS, vol. 9266, pp. 217–229. Springer, Cham (2015). doi:10.1007/978-3-319-22867-9_19

    Chapter  Google Scholar 

  20. Rohloff, K., Schantz, R.E.: High-performance, massively scalable distributed systems using the mapreduce software framework: the shard triple-store. In: Programming Support Innovations for Emerging Distributed Applications, p. 4. ACM (2010)

    Google Scholar 

  21. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: mapping SPARQL to pig Latin. In: Proceedings of the International Workshop on Semantic Web Information Management, p. 4. ACM (2011)

    Google Scholar 

  22. Vohra, D.: Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools. Apress (2016)

    Google Scholar 

  23. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and retrieval in Jena2. In: Proceedings of the First International Conference on Semantic Web and Databases, pp. 120–139 (2003). CEUR-WS.org

Download references

Acknowledgment

This research has been supported by Rockwell Automation Laboratory for Distributed Intelligent Control (RA-DIC) and by institutional resources for research by the Czech Technical University in Prague, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Jirkovský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jirkovský, V., Obitko, M. (2017). Enabling Semantics within Industry 4.0. In: Mařík, V., Wahlster, W., Strasser, T., Kadera, P. (eds) Industrial Applications of Holonic and Multi-Agent Systems. HoloMAS 2017. Lecture Notes in Computer Science(), vol 10444. Springer, Cham. https://doi.org/10.1007/978-3-319-64635-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64635-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64634-3

  • Online ISBN: 978-3-319-64635-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics