Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Prototype of Intelligent Data Management System for Computer Animation (iMCA)

  • Conference paper
  • First Online:
Next Generation Computer Animation Techniques (AniNex 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10582))

  • 1232 Accesses

Abstract

In recent years, one of the most noticeable“” issues of current animation production is the challenge from the exponential growth of animation data known as an increasingly data-intensive process. There are obvious gaps between the animation production needs and research development, which call for novel design and new technology to tackle the emerging challenge of handling huge amounts of data. “iMCA” is designed to develop intelligent data management solution with the capability to handle massive and hyper type animation asset and analyze/summarize information for reuse of data to facilitate human creativity providing innovative interaction to allow the manipulation of massive animation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liang, H., Sit, J., Chang, J., Zhang, J.J.: Computer animation data management: Review of evolution phases and emerging issues. Int. J. Inform. Manage. 36(6), 1089–1100 (2016)

    Article  Google Scholar 

  2. Desai, B.C.: The state of data. In: Proceedings of the 18th International Database Engineering & Applications Symposium, IDEAS 2014, pp. 77–86 (2014)

    Google Scholar 

  3. Shotgunsoftware Homepage. http://www.shotgunsoftware.com. Accessed 21 May 2017

  4. Alienbrain Homepage. http://www.alienbrain.com. Accessed 21 May 2017

  5. Tactic Homepage. http://www.tactic.net. Accessed 21 May 2017

  6. Fisher, M., Hanrahan, P.: Context-based search for 3D models. ACM Trans. Graph. (TOG) 29(6), 182 (2010)

    Article  Google Scholar 

  7. Mei, T., Rui, Y., Li, S., Tian, Q.: Multimedia search reranking: a literature survey. ACM Comput. Surv. (CSUR) 46(3), 38 (2014)

    Article  Google Scholar 

  8. Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., Alexa, M.: Sketch-based shape retrieval. ACM Trans. Graph. 31(4), 1–10 (2012)

    Google Scholar 

  9. Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. Multimedia Tools Appl. 39(3), 441 (2008)

    Article  Google Scholar 

  10. Li, Z., Ramani, K.: Ontology-based design information extraction and retrieval. Artif. Intell. Eng. Des. Anal. Manuf. 21(2), 137–154 (2007)

    Article  Google Scholar 

  11. Kassimi, M.A., Elbeqqali, O.: Semantic based 3D model retrieval. In: International Conference on Multimedia Computing and Systems, pp. 195–199. IEEE (2012)

    Google Scholar 

  12. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  13. Grüninger, M., Fox, M.S.: Methodology for the Design and Evaluation of Ontologies (1995)

    Google Scholar 

  14. Borst, W.N.: Construction of engineering ontologies for knowledge sharing and reuse, Universiteit Twente (1997)

    Google Scholar 

  15. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1), 161–197 (1998)

    Article  MATH  Google Scholar 

  16. Falcidieno, B.: Aim@ shape project presentation. In: Proceedings of the Shape Modeling Applications, p. 329. IEEE (2004)

    Google Scholar 

  17. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D.: A search engine for 3D models. ACM Trans. Graph. (TOG) 22(1), 83–105 (2003)

    Article  Google Scholar 

  18. Google 3D Warehouse. https://3dwarehouse.sketchup.com

  19. Ontology for Media Resources 1.0. http://www.w3.org/TR/mediaont-10

  20. Arndt, R., Troncy, R., Staab, S., Hardman, L.: Comm: a core ontology for multimediaannotation. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 403–421. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Thalmann, D., Farenc, N., Boulic, R.: Virtual human life simulation and database: why and how. In: Proceedings of the 1999 International Symposium on Database Applications in Non-Traditional Environments (DANTE 1999), pp. 471–479. IEEE (1999)

    Google Scholar 

  22. De Boeck, J., Raymaekers, C., Coninx, K.: Comparing NiMMiT and data-driven notations for describing multimodal interaction. In: Coninx, K., Luyten, K., Schneider, Kevin A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 217–229. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70816-2_16

    Chapter  Google Scholar 

  23. Flotyński, J., Walczak, K.: Conceptual semantic representation of 3D content. In: Abramowicz, W. (ed.) BIS 2013. LNBIP, vol. 160, pp. 244–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41687-3_23

    Chapter  Google Scholar 

  24. Ruminski, D., Walczak, K.: Semantic contextual augmented reality environments. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 401–404. IEEE (2014)

    Google Scholar 

  25. Teixeira, J.S.F., Sá, E.D.J.V., Fernandes, C.T.: A taxonomy of educational games compatible with the LOM-IEEE data model. In: Proceedings of Interdisciplinary Studies in Computer Science SCIENTIA, pp. 44–59 (2008)

    Google Scholar 

  26. Dubin, D., Jett, J.: An ontological framework for describing games. In: Proceedings of the 15th ACM/IEEE-CE on Joint Conference on Digital Libraries, pp. 165–168. ACM (2015)

    Google Scholar 

  27. BinSubaih, A., Maddock, S., Romano, D.: Game logic portability. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 458–461. ACM (2005)

    Google Scholar 

  28. Double Negative Homepage. http://www.dneg.com/. Accessed 21 May 2017

  29. Picasso Pictures Homepage. http://www.picassopictures.com. Accessed 21 May 2017

Download references

Acknowledgment

The research leading to these results has been partially supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n° [612627].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meili Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, H., Wu, F., Chang, J., Wang, M. (2017). Prototype of Intelligent Data Management System for Computer Animation (iMCA). In: Chang, J., Zhang, J., Magnenat Thalmann, N., Hu, SM., Tong, R., Wang, W. (eds) Next Generation Computer Animation Techniques. AniNex 2017. Lecture Notes in Computer Science(), vol 10582. Springer, Cham. https://doi.org/10.1007/978-3-319-69487-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69487-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69486-3

  • Online ISBN: 978-3-319-69487-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics