Abstract
In recent years, one of the most noticeable“” issues of current animation production is the challenge from the exponential growth of animation data known as an increasingly data-intensive process. There are obvious gaps between the animation production needs and research development, which call for novel design and new technology to tackle the emerging challenge of handling huge amounts of data. “iMCA” is designed to develop intelligent data management solution with the capability to handle massive and hyper type animation asset and analyze/summarize information for reuse of data to facilitate human creativity providing innovative interaction to allow the manipulation of massive animation data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liang, H., Sit, J., Chang, J., Zhang, J.J.: Computer animation data management: Review of evolution phases and emerging issues. Int. J. Inform. Manage. 36(6), 1089–1100 (2016)
Desai, B.C.: The state of data. In: Proceedings of the 18th International Database Engineering & Applications Symposium, IDEAS 2014, pp. 77–86 (2014)
Shotgunsoftware Homepage. http://www.shotgunsoftware.com. Accessed 21 May 2017
Alienbrain Homepage. http://www.alienbrain.com. Accessed 21 May 2017
Tactic Homepage. http://www.tactic.net. Accessed 21 May 2017
Fisher, M., Hanrahan, P.: Context-based search for 3D models. ACM Trans. Graph. (TOG) 29(6), 182 (2010)
Mei, T., Rui, Y., Li, S., Tian, Q.: Multimedia search reranking: a literature survey. ACM Comput. Surv. (CSUR) 46(3), 38 (2014)
Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., Alexa, M.: Sketch-based shape retrieval. ACM Trans. Graph. 31(4), 1–10 (2012)
Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. Multimedia Tools Appl. 39(3), 441 (2008)
Li, Z., Ramani, K.: Ontology-based design information extraction and retrieval. Artif. Intell. Eng. Des. Anal. Manuf. 21(2), 137–154 (2007)
Kassimi, M.A., Elbeqqali, O.: Semantic based 3D model retrieval. In: International Conference on Multimedia Computing and Systems, pp. 195–199. IEEE (2012)
Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)
Grüninger, M., Fox, M.S.: Methodology for the Design and Evaluation of Ontologies (1995)
Borst, W.N.: Construction of engineering ontologies for knowledge sharing and reuse, Universiteit Twente (1997)
Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1), 161–197 (1998)
Falcidieno, B.: Aim@ shape project presentation. In: Proceedings of the Shape Modeling Applications, p. 329. IEEE (2004)
Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D.: A search engine for 3D models. ACM Trans. Graph. (TOG) 22(1), 83–105 (2003)
Google 3D Warehouse. https://3dwarehouse.sketchup.com
Ontology for Media Resources 1.0. http://www.w3.org/TR/mediaont-10
Arndt, R., Troncy, R., Staab, S., Hardman, L.: Comm: a core ontology for multimediaannotation. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 403–421. Springer, Heidelberg (2009)
Thalmann, D., Farenc, N., Boulic, R.: Virtual human life simulation and database: why and how. In: Proceedings of the 1999 International Symposium on Database Applications in Non-Traditional Environments (DANTE 1999), pp. 471–479. IEEE (1999)
De Boeck, J., Raymaekers, C., Coninx, K.: Comparing NiMMiT and data-driven notations for describing multimodal interaction. In: Coninx, K., Luyten, K., Schneider, Kevin A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 217–229. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70816-2_16
Flotyński, J., Walczak, K.: Conceptual semantic representation of 3D content. In: Abramowicz, W. (ed.) BIS 2013. LNBIP, vol. 160, pp. 244–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41687-3_23
Ruminski, D., Walczak, K.: Semantic contextual augmented reality environments. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 401–404. IEEE (2014)
Teixeira, J.S.F., Sá, E.D.J.V., Fernandes, C.T.: A taxonomy of educational games compatible with the LOM-IEEE data model. In: Proceedings of Interdisciplinary Studies in Computer Science SCIENTIA, pp. 44–59 (2008)
Dubin, D., Jett, J.: An ontological framework for describing games. In: Proceedings of the 15th ACM/IEEE-CE on Joint Conference on Digital Libraries, pp. 165–168. ACM (2015)
BinSubaih, A., Maddock, S., Romano, D.: Game logic portability. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 458–461. ACM (2005)
Double Negative Homepage. http://www.dneg.com/. Accessed 21 May 2017
Picasso Pictures Homepage. http://www.picassopictures.com. Accessed 21 May 2017
Acknowledgment
The research leading to these results has been partially supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n° [612627].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Liang, H., Wu, F., Chang, J., Wang, M. (2017). Prototype of Intelligent Data Management System for Computer Animation (iMCA). In: Chang, J., Zhang, J., Magnenat Thalmann, N., Hu, SM., Tong, R., Wang, W. (eds) Next Generation Computer Animation Techniques. AniNex 2017. Lecture Notes in Computer Science(), vol 10582. Springer, Cham. https://doi.org/10.1007/978-3-319-69487-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-69487-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69486-3
Online ISBN: 978-3-319-69487-0
eBook Packages: Computer ScienceComputer Science (R0)