Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Morph-CNN: A Morphological Convolutional Neural Network for Image Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

  • 8855 Accesses

Abstract

Deep neural networks, an emergent type of feed forward networks, have gained a lot of interest especially for computer vision problems such as analyzing and understanding digital images. In this paper, a new deep learning architecture is proposed for image analysis and recognition. Two key ingredients are involved in our architecture. First, we used the convolutional neural network, as it is well adapted for image processing since it is the most used form of stored documents. Second, a morphological feature extraction is integrated mainly thanks to its positive impact on enhancing image quality. We have validated our Morph-CNN on multi digits recognition. A study of the impact of morphological operators on the performance measure was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  3. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, vol. 3361, 10 (1995)

    Google Scholar 

  4. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press (1982)

    Google Scholar 

  5. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  6. Masci, J., Angulo, J., Schmidhuber, J.: A learning framework for morphological operators using counter–harmonic mean. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 329–340. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9_28

    Chapter  Google Scholar 

  7. Bullen, P.S.: Handbook of Means and Their Inequalities, vol. 560. Springer, Netherlands (2013)

    MATH  Google Scholar 

  8. Angulo, J.: Pseudo-morphological image diffusion using the counter-harmonic paradigm. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 426–437. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17688-3_40

    Chapter  Google Scholar 

  9. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2 (2011)

    Google Scholar 

  10. Goodfellow, I.J., et al.: Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082 (2013)

  11. LeCun, Y., Cortes, C., Burges, C.J.C.: MNIST handwritten digit database. AT&T Labs, 2 (2010), http://yann.lecun.com/exdb/mnist

  12. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  13. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 (2013)

  14. Goodfellow, I.J., et al.: Maxout networks. arXiv preprint arXiv:1302.4389 (2013)

  15. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  16. Moussa, S.B., et al.: New features using fractal multi-dimensions for generalized Arabic font recognition. Pattern Recognit. Lett. 31(5), 361–371 (2010)

    Article  Google Scholar 

  17. Bezine, H., Alimi, A.M., Derbel, N.: Handwriting trajectory movements controlled by a beta-elliptic model. TC 1 (2003)

    Google Scholar 

  18. Alimi, A.M.: Evolutionary computation for the recognition of on-line cursive handwriting. IETE J. Res. 48(5), 385–396 (2002)

    Article  Google Scholar 

  19. Boubaker, H., Kherallah, M., Alimi, A.M.: New algorithm of straight or curved baseline detection for short arabic handwritten writing. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009. IEEE (2009)

    Google Scholar 

  20. Slimane, F., et al.: A study on font-family and font-size recognition applied to Arabic word images at ultra-low resolution. Pattern Recognit. Lett. 34(2), 209–218 (2013)

    Article  MathSciNet  Google Scholar 

  21. Elbaati, A., et al.: Arabic handwriting recognition using restored stroke chronology. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009. IEEE (2009)

    Google Scholar 

  22. Baccour, L., Alimi, A.M., John, R.I.: Similarity measures for intuitionistic fuzzy sets: state of the art. J. Intell. Fuzzy Syst. 24(1), 37–49 (2013)

    MATH  MathSciNet  Google Scholar 

  23. Dhahri, H., Alimi, A.M.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: International Joint Conference on Neural Networks, IJCNN 2006. IEEE (2006)

    Google Scholar 

  24. Bouaziz, S., Dhahri, H., Alimi, A.M., Abraham, A.: A hybrid learning algorithm for evolving flexible beta basis function neural tree model. Neurocomputing 117, 107–117 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorra Mellouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mellouli, D., Hamdani, T.M., Ayed, M.B., Alimi, A.M. (2017). Morph-CNN: A Morphological Convolutional Neural Network for Image Classification. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics