Abstract
Deep neural networks, an emergent type of feed forward networks, have gained a lot of interest especially for computer vision problems such as analyzing and understanding digital images. In this paper, a new deep learning architecture is proposed for image analysis and recognition. Two key ingredients are involved in our architecture. First, we used the convolutional neural network, as it is well adapted for image processing since it is the most used form of stored documents. Second, a morphological feature extraction is integrated mainly thanks to its positive impact on enhancing image quality. We have validated our Morph-CNN on multi digits recognition. A study of the impact of morphological operators on the performance measure was conducted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, vol. 3361, 10 (1995)
Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press (1982)
Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15825-4_10
Masci, J., Angulo, J., Schmidhuber, J.: A learning framework for morphological operators using counter–harmonic mean. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 329–340. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9_28
Bullen, P.S.: Handbook of Means and Their Inequalities, vol. 560. Springer, Netherlands (2013)
Angulo, J.: Pseudo-morphological image diffusion using the counter-harmonic paradigm. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 426–437. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17688-3_40
Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2 (2011)
Goodfellow, I.J., et al.: Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082 (2013)
LeCun, Y., Cortes, C., Burges, C.J.C.: MNIST handwritten digit database. AT&T Labs, 2 (2010), http://yann.lecun.com/exdb/mnist
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 (2013)
Goodfellow, I.J., et al.: Maxout networks. arXiv preprint arXiv:1302.4389 (2013)
Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
Moussa, S.B., et al.: New features using fractal multi-dimensions for generalized Arabic font recognition. Pattern Recognit. Lett. 31(5), 361–371 (2010)
Bezine, H., Alimi, A.M., Derbel, N.: Handwriting trajectory movements controlled by a beta-elliptic model. TC 1 (2003)
Alimi, A.M.: Evolutionary computation for the recognition of on-line cursive handwriting. IETE J. Res. 48(5), 385–396 (2002)
Boubaker, H., Kherallah, M., Alimi, A.M.: New algorithm of straight or curved baseline detection for short arabic handwritten writing. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009. IEEE (2009)
Slimane, F., et al.: A study on font-family and font-size recognition applied to Arabic word images at ultra-low resolution. Pattern Recognit. Lett. 34(2), 209–218 (2013)
Elbaati, A., et al.: Arabic handwriting recognition using restored stroke chronology. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009. IEEE (2009)
Baccour, L., Alimi, A.M., John, R.I.: Similarity measures for intuitionistic fuzzy sets: state of the art. J. Intell. Fuzzy Syst. 24(1), 37–49 (2013)
Dhahri, H., Alimi, A.M.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: International Joint Conference on Neural Networks, IJCNN 2006. IEEE (2006)
Bouaziz, S., Dhahri, H., Alimi, A.M., Abraham, A.: A hybrid learning algorithm for evolving flexible beta basis function neural tree model. Neurocomputing 117, 107–117 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mellouli, D., Hamdani, T.M., Ayed, M.B., Alimi, A.M. (2017). Morph-CNN: A Morphological Convolutional Neural Network for Image Classification. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-70096-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70095-3
Online ISBN: 978-3-319-70096-0
eBook Packages: Computer ScienceComputer Science (R0)