Abstract
Adaptive guided differential evolution algorithm (AGDE) is a DE algorithm that utilizes the information of good and bad vectors in the population, it introduced a novel mutation rule in order to balance effectively the exploration and exploitation tradeoffs. It divided the population into three clusters (best, better and worst) with sizes 100p%, NP-2 * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). AGDE selects three random individuals, one of each partition to implement the mutation process. Besides, a novel adaptation scheme was proposed in order to update the value of crossover rate without previous knowledge about the characteristics of the problems. This paper introduces enhanced AGDE (EAGDE) with non-linear population size reduction, which gradually decreases the population size according to a non-linear function. Moreover, a newly developed rule developed to determine the initial population size, that is related to the dimensionality of the problems.
The performance of the proposed algorithm is evaluated using CEC2013 benchmarks and the results are compared with the state-of-art DE and non-DE algorithms, the results showed a great competitiveness for the proposed algorithm over the other algorithms, and the original AGDE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute Technical Report, Technical report. TR-95-012 (1995)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)
Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
Mohamed, A.W., Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Information Sciences, pp. 171–208 (2012)
Mohamed, A.W., Sabry, H.Z., Khorshid, M.: An alternative differential evolution algorithm for global optimization. J. Adv. Res. 3(2), 149–165 (2012)
Mohamed, A.W., Sabry, H.Z., Farhat, A.: Advanced differential evolution algorithm for global numerical optimization. In: Proceedings of the IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE 2011), Penang, Malaysia, pp. 156–161 (2011)
Li, X., Yin, M.: Modified differential evolution with self-adaptive parameters method. J. Comb. Optim. 31(2), 546–576 (2014)
Mohamed, A.W.: An improved differential evolution algorithm with triangular mutation for global numerical optimization. Comput. Ind. Eng. 85, 359–375 (2015)
Mohamed, A.W., Suganthan, P.N.: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft. Comput. (2017). https://doi.org/10.1007/s00500-017-2777-2
Mohamed, A.W.: An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. Cybernet. 8, 989 (2017). https://doi.org/10.1007/s13042-015-0479-6
Mohamed, A.W.: A novel differential evolution algorithm for solving constrained engineering optimization problems. J. Intell. Manuf. (2017). https://doi.org/10.1007/s10845-017-1294-6
Mohamed, A.W., Almazyad, A.S.: Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems. Appl. Comput. Intell. Soft Comput. 2017, 18 (2017). https://doi.org/10.1155/2017/7974218
Mohamed, A.W.: Solving stochastic programming problems using new approach to Differential Evolution algorithm. Egypt. Inform. J. 18(2), 75–86 (2017)
Brest, J., Greiner, S., Boškovic, M., Mernik, M., ˇZumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)
Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12(1), 107–125 (2008)
Peng, F., Tang, K., Chen, G., Yao, X.: Multi-start JADE with knowledge transfer for numerical optimization. In: IEEE CEC, pp. 1889–1895 (2009)
Montgomery, J., Chen, S.: An analysis of the operation of differential evolution at high and low crossover rates. In: IEEE Congress on Evolutionary Computation, Barcelona, pp. 1–8 (2010)
Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)
Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)
Yong, W., Han-Xiong, L., Tingwen, H., Long, L.: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl. Soft Comput. 18, 232–247 (2014)
Draa, A., Bouzoubia, S., Boukhalfa, I.: A sinusoidal differential evolution algorithm for numerical optimization. Appl. Soft Comput. 27, 99–126 (2015)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)
Cheng, J.X., Zhang, G.X., Neri, F.: Enhancing distributed Differential Evolution with multicultural migration for global numerical optimization. Inf. Sci. 247, 72–93 (2013)
Gao, W.F., Pan, Z., Gao, J.: A new highly efficient differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)
Mallipeddi, R., Suganthan, P.N.: Empirical study on the effect of population size on Differential Evolution algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation, Hong Kong (2008)
Wang, H., Wang, W.J., Cui, Z.H., Sun, H., Ranhnamayan, S.: Heterogeneous differential evolution for numerical optimization. Sci. World J. 2014, 7 pages (2014). Article no. 318063, https://doi.org/10.1155/2014/318063
Gao, W.F., Yen, G.G., Liu, S.Y.: A dual Differential Evolution with coevolution for constrained optimization. IEEE Trans. Cybern. 45(5), 1094–1107 (2015)
Brest, J., Maucec, M.S.: Self-adaptive Differential Evolution algorithm using population size reduction and three strategies. Soft. Comput. 15(11), 2157–2174 (2011)
Zamuda, A., Brest, J.: Self-adaptive control parameters’ randomization frequency and propagations in Differential Evolution. Swarm Evol. Comput. 25, 72–99 (2015)
Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. 32, 1–24 (2017)
Mohamed, A.W., Mohamed, A.K.: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cyber. (2017). https://doi.org/10.1007/s13042-017-0711-7
Laredo, J.L.J., Fernandes, C., Guervós, J.J.M., Gagné, C.: Improving genetic algorithms performance via deterministic population shrinkage. In: GECCO 2009, pp. 819–826 (2009)
Liang, J.J., Qin, B.Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Zhengzhou University, Nanyang Technological University, Zhengzhou, China, Singapore (2013)
García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behavior: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15, 617–644 (2009)
Hansen, N., Ostermeier, A.: CMA-ES source code (2009). http://www.lri.fr/~hansen/cmaes_inmatlab.html
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Mohamed, A.K., Mohamed, A.W., Elfeky, E.Z., Saleh, M. (2018). Enhancing AGDE Algorithm Using Population Size Reduction for Global Numerical Optimization. In: Hassanien, A., Tolba, M., Elhoseny, M., Mostafa, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). AMLTA 2018. Advances in Intelligent Systems and Computing, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-74690-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-74690-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74689-0
Online ISBN: 978-3-319-74690-6
eBook Packages: EngineeringEngineering (R0)