Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing AGDE Algorithm Using Population Size Reduction for Global Numerical Optimization

  • Conference paper
  • First Online:
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018) (AMLTA 2018)

Abstract

Adaptive guided differential evolution algorithm (AGDE) is a DE algorithm that utilizes the information of good and bad vectors in the population, it introduced a novel mutation rule in order to balance effectively the exploration and exploitation tradeoffs. It divided the population into three clusters (best, better and worst) with sizes 100p%, NP-2 * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). AGDE selects three random individuals, one of each partition to implement the mutation process. Besides, a novel adaptation scheme was proposed in order to update the value of crossover rate without previous knowledge about the characteristics of the problems. This paper introduces enhanced AGDE (EAGDE) with non-linear population size reduction, which gradually decreases the population size according to a non-linear function. Moreover, a newly developed rule developed to determine the initial population size, that is related to the dimensionality of the problems.

The performance of the proposed algorithm is evaluated using CEC2013 benchmarks and the results are compared with the state-of-art DE and non-DE algorithms, the results showed a great competitiveness for the proposed algorithm over the other algorithms, and the original AGDE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute Technical Report, Technical report. TR-95-012 (1995)

    Google Scholar 

  2. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

    Article  Google Scholar 

  4. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  5. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  6. Mohamed, A.W., Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Information Sciences, pp. 171–208 (2012)

    Google Scholar 

  7. Mohamed, A.W., Sabry, H.Z., Khorshid, M.: An alternative differential evolution algorithm for global optimization. J. Adv. Res. 3(2), 149–165 (2012)

    Article  Google Scholar 

  8. Mohamed, A.W., Sabry, H.Z., Farhat, A.: Advanced differential evolution algorithm for global numerical optimization. In: Proceedings of the IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE 2011), Penang, Malaysia, pp. 156–161 (2011)

    Google Scholar 

  9. Li, X., Yin, M.: Modified differential evolution with self-adaptive parameters method. J. Comb. Optim. 31(2), 546–576 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mohamed, A.W.: An improved differential evolution algorithm with triangular mutation for global numerical optimization. Comput. Ind. Eng. 85, 359–375 (2015)

    Article  Google Scholar 

  11. Mohamed, A.W., Suganthan, P.N.: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft. Comput. (2017). https://doi.org/10.1007/s00500-017-2777-2

    Google Scholar 

  12. Mohamed, A.W.: An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. Cybernet. 8, 989 (2017). https://doi.org/10.1007/s13042-015-0479-6

    Article  Google Scholar 

  13. Mohamed, A.W.: A novel differential evolution algorithm for solving constrained engineering optimization problems. J. Intell. Manuf. (2017). https://doi.org/10.1007/s10845-017-1294-6

    Google Scholar 

  14. Mohamed, A.W., Almazyad, A.S.: Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems. Appl. Comput. Intell. Soft Comput. 2017, 18 (2017). https://doi.org/10.1155/2017/7974218

  15. Mohamed, A.W.: Solving stochastic programming problems using new approach to Differential Evolution algorithm. Egypt. Inform. J. 18(2), 75–86 (2017)

    Article  Google Scholar 

  16. Brest, J., Greiner, S., Boškovic, M., Mernik, M., ˇZumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  17. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12(1), 107–125 (2008)

    Article  Google Scholar 

  18. Peng, F., Tang, K., Chen, G., Yao, X.: Multi-start JADE with knowledge transfer for numerical optimization. In: IEEE CEC, pp. 1889–1895 (2009)

    Google Scholar 

  19. Montgomery, J., Chen, S.: An analysis of the operation of differential evolution at high and low crossover rates. In: IEEE Congress on Evolutionary Computation, Barcelona, pp. 1–8 (2010)

    Google Scholar 

  20. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  21. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

    Article  Google Scholar 

  22. Yong, W., Han-Xiong, L., Tingwen, H., Long, L.: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl. Soft Comput. 18, 232–247 (2014)

    Article  Google Scholar 

  23. Draa, A., Bouzoubia, S., Boukhalfa, I.: A sinusoidal differential evolution algorithm for numerical optimization. Appl. Soft Comput. 27, 99–126 (2015)

    Article  Google Scholar 

  24. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  25. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  26. Cheng, J.X., Zhang, G.X., Neri, F.: Enhancing distributed Differential Evolution with multicultural migration for global numerical optimization. Inf. Sci. 247, 72–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, W.F., Pan, Z., Gao, J.: A new highly efficient differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)

    Article  Google Scholar 

  28. Mallipeddi, R., Suganthan, P.N.: Empirical study on the effect of population size on Differential Evolution algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation, Hong Kong (2008)

    Google Scholar 

  29. Wang, H., Wang, W.J., Cui, Z.H., Sun, H., Ranhnamayan, S.: Heterogeneous differential evolution for numerical optimization. Sci. World J. 2014, 7 pages (2014). Article no. 318063, https://doi.org/10.1155/2014/318063

  30. Gao, W.F., Yen, G.G., Liu, S.Y.: A dual Differential Evolution with coevolution for constrained optimization. IEEE Trans. Cybern. 45(5), 1094–1107 (2015)

    Google Scholar 

  31. Brest, J., Maucec, M.S.: Self-adaptive Differential Evolution algorithm using population size reduction and three strategies. Soft. Comput. 15(11), 2157–2174 (2011)

    Article  Google Scholar 

  32. Zamuda, A., Brest, J.: Self-adaptive control parameters’ randomization frequency and propagations in Differential Evolution. Swarm Evol. Comput. 25, 72–99 (2015)

    Article  Google Scholar 

  33. Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. 32, 1–24 (2017)

    Article  Google Scholar 

  34. Mohamed, A.W., Mohamed, A.K.: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cyber. (2017). https://doi.org/10.1007/s13042-017-0711-7

    Google Scholar 

  35. Laredo, J.L.J., Fernandes, C., Guervós, J.J.M., Gagné, C.: Improving genetic algorithms performance via deterministic population shrinkage. In: GECCO 2009, pp. 819–826 (2009)

    Google Scholar 

  36. Liang, J.J., Qin, B.Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Zhengzhou University, Nanyang Technological University, Zhengzhou, China, Singapore (2013)

    Google Scholar 

  37. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behavior: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15, 617–644 (2009)

    Article  MATH  Google Scholar 

  38. Hansen, N., Ostermeier, A.: CMA-ES source code (2009). http://www.lri.fr/~hansen/cmaes_inmatlab.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Khater Mohamed or Ali Wagdy Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohamed, A.K., Mohamed, A.W., Elfeky, E.Z., Saleh, M. (2018). Enhancing AGDE Algorithm Using Population Size Reduction for Global Numerical Optimization. In: Hassanien, A., Tolba, M., Elhoseny, M., Mostafa, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). AMLTA 2018. Advances in Intelligent Systems and Computing, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-74690-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74690-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74689-0

  • Online ISBN: 978-3-319-74690-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics