Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Risk Management for Cooperative Autonomous Medical Cyber-Physical Systems

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2018)

Abstract

Medical cyber-physical systems (MCPS) combine independent devices at runtime in order to render new patient monitoring/control functionalities, such as physiological closed loops for controlling drug infusion and optimization of alarms. MCPS and their relevant system contexts are highly variable, which detrimentally affects the application of established safety assurance methodologies. In this paper, we introduce an approach based on dynamic risk assessment and control for MCPS. During runtime, information regarding the safety properties of the constituent systems, relevant information about the patient’s characteristics, as well as other relevant context information is utilized to dynamically and continuously optimize the system performance while guaranteeing an acceptable level of safety. We evaluated our approach by means of a patient-controlled analgesia proof-of-concept simulation and sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Specified according to the standard ASTM F2761-2010.

  2. 2.

    https://www.bayesfusion.com/genie-modeler.

  3. 3.

    https://www.openice.info/.

References

  1. Lee, I., Sokolsky, O., et al.: Challenges and research directions in medical cyber-physical systems. Proc. IEEE. 100, 75–90 (2012)

    Article  Google Scholar 

  2. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems. ACM Trans. Auton. Adapt. Syst. 8, 1–20 (2013)

    Article  Google Scholar 

  3. Kurd, Z., Kelly, T., McDermid, J., Calinescu, R., Kwiatkowska, M.: Establishing a framework for dynamic risk management in ‘intelligent’ aero-engine control. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 326–341. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04468-7_26

    Chapter  Google Scholar 

  4. Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J., Roy, M., Masson, L.: SMOF: A safety monitoring framework for autonomous systems. IEEE Trans. Syst. Man, Cybern. Syst. 1–14 (2016)

    Google Scholar 

  5. Thieme, C.A., Utne, I.B.: A risk model for autonomous marine systems and operation focusing on human–autonomy collaboration. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 231, 446–464 (2017)

    Google Scholar 

  6. Wardziński, A.: Safety assurance strategies for autonomous vehicles. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 277–290. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4_24

    Chapter  Google Scholar 

  7. Feth, P., Schneider, D., Adler, R.: A conceptual safety supervisor definition and evaluation framework for autonomous systems. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 135–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4_9

    Chapter  Google Scholar 

  8. Leite, F.L., Adler, R., Feth, P.: Safety assurance for autonomous and collaborative medical cyber-physical systems. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 237–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66284-8_20

    Chapter  Google Scholar 

  9. Wei, R., Kelly, T.P., Hawkins, R., Armengaud, E.: DEIS: dependability engineering innovation for cyber-physical systems. In: Seidl, M., Zschaler, S. (eds.) STAF 2017. LNCS, vol. 10748, pp. 409–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74730-9_37

    Chapter  Google Scholar 

  10. Medawar, S., Scholle, D., Sljivo, I.: Cooperative safety critical CPS platooning in SafeCOP. In: 2017 6th Mediterranean Conference on Embedded Computing (MECO)

    Google Scholar 

  11. Cremer, F., Den Breejen, E., Schutte, K.: Sensor data fusion for anti-personnel land-mine detection. In: Proceedings of EuroFusion 1998, International Conference on Data Fusion, pp. 55–60 (1998)

    Google Scholar 

  12. Challa, S., Koks, D.: Bayesian and Dempster-Shafer fusion. Sadhana 29, 145–174 (2004)

    Article  MathSciNet  Google Scholar 

  13. Stevens, N., et al.: Smart alarms: multivariate medical alarm integration for post CABG surgery patients. In: Proceedings of the 2nd ACM SIGHIT - IHI 2012, p. 533. ACM Press, New York (2012)

    Google Scholar 

  14. Jiang, Y., Tan, P., Song, H., Wan, B., Hosseini, M., Sha, L.: A self-adaptively evolutionary screening approach for sepsis patient. In: IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), pp. 60–65, August 2016

    Google Scholar 

  15. Brito, M., Griffiths, G.: A bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions. Reliab. Eng. Syst. Saf. 146, 55–67 (2016)

    Article  Google Scholar 

  16. Lynn, L.A., Curry, J.P.: Patterns of unexpected in-hospital deaths: a root cause analysis. Patient Saf. Surg. 5, 3 (2011)

    Article  Google Scholar 

  17. Practices institute for safe medication: fatal PCA adverse events continue to happen… Better patient monitoring is essential to prevent harm, 41, 736–738 (2013)

    Google Scholar 

  18. Jensen, F.V.: An introduction to Bayesian networks. Springer, Heidelberg (1996)

    Google Scholar 

  19. Ross, T.J. (University of N.M.): Fuzzy logic with engineering applications. Wiley, Chichester (2010)

    Google Scholar 

Download references

Acknowledgments

The ongoing research that led to this paper is funded by the Brazilian National Research Council (CNPq) under grant CSF 201715/2014-7 in cooperation with Fraunhofer IESE and TU Kaiserslautern. We would also like to thank Sonnhild Namingha for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio L. Leite Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leite, F.L., Schneider, D., Adler, R. (2018). Dynamic Risk Management for Cooperative Autonomous Medical Cyber-Physical Systems. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2018. Lecture Notes in Computer Science(), vol 11094. Springer, Cham. https://doi.org/10.1007/978-3-319-99229-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99229-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99228-0

  • Online ISBN: 978-3-319-99229-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics