Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Local Search Techniques for the Generalized Balanced Academic Curriculum Problem

  • Conference paper
Hybrid Metaheuristics (HM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5296))

Included in the following conference series:

Abstract

The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to teaching periods satisfying prerequisites and balancing students’ load. BACP is included in CSPlib along with three benchmark instances. However, the BACP formulation in CSPLib is actually simpler than the real problem that, in general, universities have to solve in practice.

In this paper, we propose a generalized formulation of the problem and we study a set of hybrid solution techniques based on high-level control strategies that drive a collection of basic local search components. The result of the study allows us to build a complex combination of simulated annealing, dynamic tabu search and large-neighborhood search. In addition, we present six new instances obtained from our university, which are much larger and more challenging than the CSPlib ones (the latter are always solved to optimality in less than 0.1 seconds by our techniques).

For the sake of possible future comparisons, we make available through the web all the input data, our scores and results, and a solution validator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R., Ergun, Ö., Orlin, J., Punnen, A.: A survey of very-large-scale neighborhood search techniques. Discrete Applied Mathematics 123, 75–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Castro, C., Crawford, B., Monfroy, E.: A quantitative approach for the design of academic curricula. In: Smith, M.J., Salvendy, G. (eds.) HCII 2007. LNCS, vol. 4558, pp. 279–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Castro, C., Manzano, S.: Variable and value ordering when solving balanced academic curriculum problems. In: 6th Workshop of the ERCIM WG on Constraints (2001)

    Google Scholar 

  4. Di Gaspero, L., McCollum, B., Schaerf, A.: The second international timetabling competition (ITC-,: Curriculum-based course timetabling (track 3). Technical Report QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1, School of Electronics, Electrical Engineering and Computer Science, Queens University, Belfast (UK). ITC-2007 (August 2007), http://www.cs.qub.ac.uk/itc2007/

  5. Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Software—Practice and Experience 33(8), 733–765 (2003)

    Article  Google Scholar 

  6. Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modeling and Algorithms 5(1), 65–89 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. Technical report, Technical report APES-09-1999 (1999), http://csplib.cs.strath.ac.uk/ ; A shorter version appears. In: The Proceedings of the 5th International Conference on Principles and Practices of Constraint Programming (CP 1999). LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999)

  8. Hansen, P., Mladenović, N.: An introduction to variable neighbourhood search. In: Voß, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 433–458. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  9. Hnich, B., Kızıltan, Z., Walsh, T.: Modelling a balanced academic curriculum problem. In: CP-AI-OR 2002, pp. 121–131 (2002)

    Google Scholar 

  10. Hoos, H.H., Stützle, T.: Stochastic Local Search – Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)

    MATH  Google Scholar 

  11. Lambert, T., Castro, C., Monfroy, E., Saubion, F.: Solving the balanced academic curriculum problem with an hybridization of genetic algorithm and constraint propagation. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 410–419. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Lourenço, H.R., Martin, O., Stützle, T.: Applying iterated local search to the permutation flow shop problem. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. Kluwer, Dordrecht (2001)

    Google Scholar 

  13. Schaerf, A., Di Gaspero, L.: Measurability and reproducibility in timetabling research: Discussion and proposals. In: Burke, E., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 40–49. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Gaspero, L., Schaerf, A. (2008). Hybrid Local Search Techniques for the Generalized Balanced Academic Curriculum Problem. In: Blesa, M.J., et al. Hybrid Metaheuristics. HM 2008. Lecture Notes in Computer Science, vol 5296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88439-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88439-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88438-5

  • Online ISBN: 978-3-540-88439-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics