Abstract
A new wave of social computing applications has empowered users to create and share a variety of content. This upsurge of user-generated data involves a paradigm shift in terms of the management, searching and accessing of information. Social tagging is one of these ways. This paper serves as an extension to the existing work done on investigating the effectiveness of tags for content discovery using text categorization techniques. In particular, we explored how different tag weighting schemes affect classifier performance. Six text categorization experiments were conducted using a dataset drawn from del.icio.us. The results suggest that not all tags are useful for content discovery even with different weights associated with them. Content analysis was done to understand the relationships between the use of a tag on a document and the document’s terms. Implications of this research are discussed.
This work is partly funded by A*STAR grant 062 130 0057.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 971–980. ACM, New York (2007)
Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of the 15th international conference on World Wide Web, pp. 625–632. ACM, New York (2006)
Chua, A.: Knowledge sharing: A game people play. Aslib Proceedings 55(3), 117–129 (2003)
Farooq, U., Kannampallil, T.G., Song, Y., Ganoe, C.H., Carroll, J.M., Giles, L.: Evaluating tagging behavior in social bookmarking systems: metrics and design heuristics. In: Proceedings of the 2007 international ACM Conference on Supporting Group Work, pp. 351–360. ACM, New York (2007)
Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Commun. ACM. 30(11), 964–971 (1987)
Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of Information Science 32(2), 198–208 (2006)
Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Proceedings of the 10th European Conference on Machine Learning, pp. 137–142. Springer, Berlin (1998)
Kipp, M.E.: Exploring the context of user, creator and intermediate tagging. In: ASIS&T 2006 Information Architecture Summit (2006)
Koutrika, G., Effendi, F.A., Gyöngyi, Z., Heymann, P., Garcia-Molina, H.: Combating spam in tagging systems. In: Proceedings of the 3rd international workshop on Adversarial information retrieval on the web, pp. 57–64. ACM, New York (2007)
Levy, M., Sandler, M.: A semantic space for music derived from social tags. In: Proceedings of the 8th International Conference on Music Information Retrieval, ISMIR 2007 (2007)
Lin, X., Beaudoin, J.E., Bui, Y., Desai, K.: Exploring characteristics of social classification. In: Proceedings 17th Workshop of the American Society for Information Science and Technology Special Interest Group in Classification Research (2006)
Macgregor, G., McCulloch, E.: Collaborative tagging as a knowledge organisation and resource discovery tool. Library Review 55(5), 291–300 (2006)
Marlow, C., Naaman, M., Boyd, d., Davis, M.: HT06, tagging paper, taxonomy, Flickr, academic article, to read. In: Proceedings of the seventeenth conference on Hypertext and hypermedia, pp. 31–40. ACM, New York (2006)
Morville, P.: Ambient findability. O’Reilly, Beijing (2005)
Olsen, K.A., Sochats, K.M., Williams, J.G.: Full text searching and information overload. International Information and Library Review 30(2), 105–122 (1998)
Razikin, K., Goh, D.H.-L., Cheong, E.K.C., Ow, Y.F.: The efficacy of tags in social tagging systems. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 506–507. Springer, Heidelberg (2007)
Razikin, K., Goh, D.H.-L., Chua, A.Y.K., Lee, C.S.: Can social tags help you find what you want? In: Christensen-Dalsgaard, B., Castelli, D., Ammitzbøll Jurik, B., Lippincott, J. (eds.) ECDL 2008. LNCS, vol. 5173, pp. 50–61. Springer, Heidelberg (2008)
Sen, S., Lam, S., Rashid, A.M., Cosley, D., Frankowski, D., Osterhous, J., Harper, F.M., Riedl, J.: Tagging, communities, vocabulary, evolution. In: Proceedings of the 2006 ACM Conference on Computer Supported Cooperative Work, pp. 181–190. ACM, New York (2006)
Sun, A., Suryanto, M.A., Liu, Y.: Blog classification using tags: An empirical study. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 307–316. Springer, Heidelberg (2007)
Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of ICML 1997, 14th International Conference on Machine Learning, pp. 412–420. Morgan Kaufmann Publishers, San Francisco (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Razikin, K., Goh, D.HL., Lee, C.S., Chua, A.Y.K. (2008). Weighing the Usefulness of Social Tags for Content Discovery. In: Buchanan, G., Masoodian, M., Cunningham, S.J. (eds) Digital Libraries: Universal and Ubiquitous Access to Information. ICADL 2008. Lecture Notes in Computer Science, vol 5362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89533-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-89533-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89532-9
Online ISBN: 978-3-540-89533-6
eBook Packages: Computer ScienceComputer Science (R0)