Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gene Networks Viewed through Two Models

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

  • 1159 Accesses

Abstract

This paper presents our computational and measurement strategy for investigating gene networks from gene expression data using state space model and dynamic Bayesian network model with nonparametric regression. These methods are applied to gene expression data based on gene knockdowns and drug responses for generating large global maps of gene regulation which will light up the geography where drug target pathways lie down.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Affara, M., Dunmore, B., Savoie, C.J., Imoto, S., Tamada, Y., Araki, H., Charnock-Jones, D.S., Miyano, S., Print, C.: Understanding endothelial cell apoptosis: What can the transcriptome glycome and proteome reveal? Philosophical Transactions of Royal Society B 362(1484), 1469–1487 (2007)

    Article  CAS  Google Scholar 

  2. Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz, H.-J. (eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 121–130. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3-4), 601–620 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Hirose, O., Yoshida, R., Imoto, S., Yamaguchi, R., Higuchi, T., Charnock-Jones, D.S., Print, C., Miyano, S.: Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24(7), 932–942 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. In: Pacific Symposium on Biocomputing, vol. 7, pp. 175–186 (2002)

    Google Scholar 

  6. Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K., Kuhara, S., Miyano, S.: Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinf. Comp. Biol. 1(2), 231–252 (2003)

    Article  CAS  Google Scholar 

  7. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S.: Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J. Bioinf. Comp. Biol. 2(1), 77–98 (2004)

    Article  CAS  Google Scholar 

  8. Imoto, S., Tamada, Y., Araki, H., Yasuda, K., Print, C.G., Charnock-Jones, D.S., Sanders, D., Savoie, C.J., Tashiro, K., Kuhara, S., Miyano, S.: Computational strategy for discovering druggable gene networks from genome-wide RNA expression profiles. In: Pacific Symposium on Biocomputing, vol. 11, pp. 559–571 (2006)

    Google Scholar 

  9. Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1-3), 57–65 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Kitagawa, G., Gersch, W.: Smoothness priors analysis of time series. Springer, New York (1996)

    Book  Google Scholar 

  11. Ott, S., Imoto, S., Miyano, S.: Finding optimal models for small gene networks. In: Pacific Symp. Biocomput., vol. 9, pp. 557–567 (2004)

    Google Scholar 

  12. Ott, S., Hansen, A., Kim, S.-Y., Miyano, S.: Superiority of network motifs over optimal networks and an application to the revelation of gene network evolution. Bioinformatics 21(2), 227–238 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Perrier, E., Imoto, S., Miyano, S.: Finding optimal Bayesian network given a super-structure. J. Machine Learning Research 9, 2251–2286 (2008)

    Google Scholar 

  14. Straus, D.S., Glass, C.K.: Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 28(12), 551–558 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Tamada, Y., Araki, H., Imoto, S., Nagasaki, M., Doi, A., Nakanishi, Y., Tomiyasu, Y., Yasuda, K., Dunmore, B., Sanders, D., Humphreys, S., Print, C., Charnock-Jones, D.S., Tashiro, K., Kuhara, S., Miyano, S.: Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks. In: Pacific Symposium on Biocomputing, vol. 14, pp. 251–263 (2009)

    Google Scholar 

  16. Yamaguchi, R., Imoto, S., Yamauchi, M., Nagasaki, M., Yoshida, R., Shimamura, T., Hatanaka, Y., Ueno, K., Higuchi, T., Gotoh, N., Miyano, S.: Predicting differences in gene regulatory systems by state space models. Genome Informatics 21, 101–113 (2008)

    CAS  PubMed  Google Scholar 

  17. Yamaguchi, R., Yoshida, R., Imoto, S., Higuchi, T., Miyano, S.: Finding module-based gene networks with state-space models – Mining high-dimensional and short time-course gene expression data. IEEE Signal Processing Magazine 24(1), 37–46 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyano, S., Yamaguchi, R., Tamada, Y., Nagasaki, M., Imoto, S. (2009). Gene Networks Viewed through Two Models. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics