Summary
One of the most important genomic tasks is the identification of promoters and splice-junction zone, which are essential on deciding whether there is a gene or not in a genome sequence. This problem could be seen as a classification problem, therefore the use of computational algorithms for both, pattern recognition and classification are a natural option to face it. In this chapter we develop a pattern classifier algorithm that works notably with bioinformatics databases. The associative memories model on which the classifier is based is the Alpha-Beta model. In order to achieve a good classification performance it was necessary to develop a new heteroassociative memories algorithm that let us recall the complete fundamental set. The heteroassociative memories property of recalling all the fundamental patterns is not so common; actually, no previous model of heteroassociative memory can guarantee this property. Thus, creating such a model is an important contribution. In addition, an heteroasociative Alpha-Beta multimemory is created, as a fundamental base for the proposed classifier.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldi, P., Brunak, S.: Bioinformatics: the machine learning approach. MIT Press, Cambridge (1998)
Doolittle, R.F.: Of URFs and ORFs: A primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley (1987)
Wolfsberg, T.G., Wetterstrand, K.A., Guyer, M.S., Collins, F.S., Baxevanis, A.D.: A user’s guide to the human genome. Nature Genetics 32 (2002)
Hassoun, M.H.: Associative Neural Memories. Oxford University Press, New York (1993)
Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1989)
Ritter, G.X., Sussner, P., Diaz-de-Leon, J.L.: Morphological associative memories. IEEE Transactions on Neural Networks 9, 281–293 (1998)
Lesk, A.M.: Introduction to Bioinformatics, 2nd edn. Oxford University Press, Oxford (2005)
Altman, R.B., Valencia, A., Miyano, S., Ranganathan, S.: Challenges for intelligent system in biology. IEEE Intell. Syst. 16(6), 14–20 (2001)
Setubal, J., Meidanis, J.: Introduction to computational molecular biology. International Thomson Publishing, Boston (1999)
Ray, S.S., Bandyopadhyay, S., Mitra, P., Pal, S.K.: Bioinformatics in neurocomputing framework. In: Proceedings. IEEE, Los Alamitos (2005)
Mitra, S., Hayashi, Y.: Bioinformatics with soft computing. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 616–635 (2006)
Salzberg, S.L., Searls, D.B., Kasif, S.: Computational methods in molecular biology. Elsevier Science, Amsterdam (1998)
Cohen, J.: Bioinformatics—An Introduction for Computer Scientists. ACM Computing Surveys 36(2), 122–158 (2004)
Fickett, J.W.: Finding genes by computer: the state of the art. Trends Genet. 12(8), 316–320 (1996)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Sciences, vol. 79, pp. 2554–2558 (1982)
Jones, D.T.: GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287, 797–815 (1999)
Lukashin, A.V., Anshelevich, V.V., Amirikyan, B.R., Gragerov, A.I., Frank-Kamenetskii, M.D.: Neural network models for promoter recognition. J. Biomol. Struct. Dyn. (6), 1123–1133 (1989)
Sun, J., Song, W.Y., Zhu, L.H., Chen, R.S.: Analysis of tRNA gene sequences by neural network. J. Comput. Biol. 2(3), 409–416 (1995)
Kalate, R.N., Tambe, S.S., Kulkarni, B.D.: Artificial neural networks for prediction of mycobacterial promoter sequences. Comput. Biol. Chem. 27(6), 555–564 (2003)
Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202(4), 865–884 (1988)
Kohonen, T.: Correlation matrix memories. IEEE Transactions on Computers, C-21 4, 353–359 (1972)
Yánez, C.: Memorias Asociativas basadas en Relaciones de Orden y Operadores Binarios (In Spanish) Ph.D. Thesis. IPN Centro de Investigación en Computación, México (2002)
Yáñez-Márquez, C., Díaz de León-Santiago, J.L.: Memorias Asociativas Basadas en Relaciones de Orden y Operaciones Binarias. Computación y Sistemas 6(4), 300–311 (2003)
Yáñez-Márquez, C., Díaz de León-Santiago, J.L.: Memorias Asociativas con Respuesta Perfecta y Capacidad Infinita. In: Albornoz, A., Alvarado, M. (eds.) Taller de Inteligencia Artificial TAINA 1999, México, pp. 245–257 (1999)
Yáñez-Márquez, C., de León-Santiago, D.J.L., Salgado, J.C.: New V-Alpha-Beta Associative Memories able to Learn and Recall Patterns with Integer Components. Technical Report 210, Blue Series. National Polytechnic Institute. Center for Computing Research, Mé xico (2005)
Sossa, H., Barrón, R., Cuevas, F., Aguilar, C.: Associative Gray Level Pattern Processing Using Binary Decomposition and αβ Memories. Neural Processing Letters 22(1) (2005)
Yáñez-Márquez, C., de Leó n-Santiago, D.J.L., Salgado, J.C.: Applying the New V-Alpha-Beta Associative Memories to Gray Level Images. Technical Report 209, Blue Series. National Polytechnic Institute. Center for Computing Research, México (2005)
Yáñez-Márquez, C., Cruz-Meza, M.E., Sánchez-Garfias, F.A., López-Yáñez, I.: Using Alpha-Beta Associative Memories to Learn and Recall RGB Images. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 828–833. Springer, Heidelberg (2007)
Román Godínez, I.: Aplicación de los Modelos Asociativos Alfa-Beta a la Bioinformática (In Spanish) MsC Thesis. IPN Centro de Investigación en Computación, México (2007)
Román-Godínez, I., Yáñez-Márquez, C.: Complete Recall on Alpha-Beta Heteroassociative Memory. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS, vol. 4827, pp. 193–202. Springer, Heidelberg (2007)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository.University of California, Department of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/mlearn/MLRepository.html
Brunak, S., Engelbrecht, J., Knudsen, S.: Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 220, 49–65 (1991)
Ortega, J.: On the informativeness of the DNA promoter sequences domain theory. Journal of Artificial Intelligence Research 2, 361–367 (1995)
Baffes, P.T., Mooney, R.J.: Symbolic revision of theories with M-of-N rules. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambery, France (1993)
Rampone, S.: Recognition of splice junction on DNA sequences by BRAIN learning algorithm. Bioinformatics 14(8), 676–684 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Godínez, I.R., López-Yáñez, I., Yáñez-Márquez, C. (2009). Classifying Patterns in Bioinformatics Databases by Using Alpha-Beta Associative Memories. In: Sidhu, A.S., Dillon, T.S. (eds) Biomedical Data and Applications. Studies in Computational Intelligence, vol 224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02193-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-02193-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02192-3
Online ISBN: 978-3-642-02193-0
eBook Packages: EngineeringEngineering (R0)