Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer Programs

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2009, RANDOM 2009)

Abstract

We consider the unsplittable flow problem (UFP) and the closely related column-restricted packing integer programs (CPIPs). In UFP we are given an edge-capacitated graph Gā€‰=ā€‰(V,E) and k request pairs R 1, ā€¦, R k , where each R i consists of a source-destination pair (s i ,t i ), a demand d i and a weight w i . The goal is to find a maximum weight subset of requests that can be routed unsplittably in G. Most previous work on UFP has focused on the no-bottleneck case in which the maximum demand of the requests is at most the smallest edge capacity. Inspired by the recent work of Bansal et al. [3] on UFP on a path without the above assumption, we consider UFP on paths as well as trees. We give a simple O(logn) approximation for UFP on trees when all weights are identical; this yields an O(log2 n) approximation for the weighted case. These are the first non-trivial approximations for UFP on trees. We develop an LP relaxation for UFP on paths that has an integrality gap of O(log2 n); previously there was no relaxation with o(n) gap. We also consider UFP in general graphs and CPIPs without the no-bottleneck assumption and obtain new and useful results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, M., Chuzhoy, J., Khanna, S., Zhang, L.: Hardness of the undirected edge-disjoint paths problem with congestion. In: Proc. of IEEE FOCS, pp. 226ā€“241 (2005)

    Google ScholarĀ 

  2. Azar, Y., Regev, O.: Combinatorial algorithms for the unsplittable flow problem. AlgorithmicaĀ 441(1), 49ā€“66 (2006)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  3. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, M.R.: A logarithmic approximation for unsplittable flow on line graphs. In: Proc. of ACM-SIAM SODA, pp. 702ā€“709 (2009)

    Google ScholarĀ 

  4. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A Quasi-PTAS for unsplittable flow on line graphs. In: Proc. of ACM STOC, pp. 721ā€“729 (2006)

    Google ScholarĀ 

  5. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. JACMĀ 48(5), 1069ā€“1090 (2001)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  6. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the Throughput of Multiple Machines in Real-Time Scheduling. SICOMPĀ 31(2), 331ā€“352 (2001)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Baveja, A., Srinivasan, A.: Approximation algorithms for disjoint paths and related routing and packing problems. Math. Oper. Res.Ā 25(2), 255ā€“280 (2000)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Bienstock, D.: Approximate formulations for 0-1 knapsack sets. Oper. Res. Lett.Ā 36(3), 317ā€“320 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: Improved approximation algorithms for resource allocation. In: Proc. of IPCO, pp. 439ā€“456 (2001)

    Google ScholarĀ 

  10. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proc. of ACM-SIAM SODA, pp. 106ā€“115 (2000)

    Google ScholarĀ 

  11. Carr, R., Vempala, S.: Randomized meta-rounding. Random Structures and AlgorithmsĀ 20(3), 343ā€“352 (2002)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  12. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation Algorithms for the Unsplittable Flow Problem. AlgorithmicaĀ 47(1), 53ā€“78 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Chekuri, C., Khanna, S., Shepherd, F.B.: An \(O(\sqrt{n})\) Approximation and Integrality Gap for Disjoint Paths and Unsplittable Flow. Theory of ComputingĀ 2, 137ā€“146 (2006)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. Chekuri, C., Khanna, S., Shepherd, F.B.: Edge-Disjoint Paths in Planar Graphs with Constant Congestion. In: Proc. of ACM STOC, pp. 757ā€“766 (2006)

    Google ScholarĀ 

  15. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity Demand Flow in a Tree and Packing Integer Programs. ACM Trans. on AlgorithmsĀ 3(3) (2007)

    Google ScholarĀ 

  16. Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K.: Hardness of Routing with Congestion in Directed Graphs. In: Proc. of ACM STOC, pp. 165ā€“178 (2007)

    Google ScholarĀ 

  17. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. AlgorithmicaĀ 18(1), 3ā€“20 (1997)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Guruswami, V., Khanna, S., Shepherd, B., Rajaraman, R., Yannakakis, M.: Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems. J. of Computer and System SciencesĀ 67(3), 473ā€“496 (2003)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. HĆ„stad, J.: Clique is Hard to Approximate within n 1Īµ. Acta MathematicaĀ 182, 105ā€“142 (1999)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Kleinberg, J.M.: Approximation algorithms for disjoint paths problems. PhD thesis, MIT EECS (1996)

    Google ScholarĀ 

  21. Kolliopoulos, S.G.: Edge-disjoint Paths and Unsplittable Flow. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, Boca Raton (2007)

    Google ScholarĀ 

  22. Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using greedy algorithms and Packing Integer Programs. Math. Prog. AĀ (99), 63ā€“87 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  23. Kolman, P.: A Note on the Greedy Algorithm for the Unsplittable Flow Problem. Information Processing LettersĀ 88(3), 101ā€“105 (2003)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  24. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. J. of AlgorithmsĀ 61(1), 20ā€“44 (2006)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  25. Pritchard, D.: Approximability of Sparse Integer Programs. In: Proc. of ESA (to appear, 2009); arXiv.org preprint, arXiv:0904.0859v1, http://arxiv.org/abs/0904.0859

  26. Raghavan, P.: Probabilistic Construction of Deterministic Algorithms: Approximating Packing Integer Programs. JCSSĀ 37(2), 130ā€“143 (1988)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  27. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    Google ScholarĀ 

  28. Shepherd, B., Vetta, A.: The Demand Matching Problem. Math. of Operations ResearchĀ 32(3), 563ā€“578 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  29. Sherali, H., Adams, W.P.: A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-Integer Zero-One Programming Problems. Discrete Applied Mathematics and Combinatorial Operations Research and Computer ScienceĀ 52 (1994)

    Google ScholarĀ 

  30. Srinivasan, A.: Improved approximations for edge-disjoint paths, unsplittable flow, and related routing problems. In: Proc. of IEEE FOCS, pp. 416ā€“425 (1997)

    Google ScholarĀ 

  31. Srinivasan, A.: New Approaches to Covering and Packing Problems. In: Proc. of ACM-SIAM SODA, pp. 567ā€“576 (2001)

    Google ScholarĀ 

  32. Van Vyve, M., Wolsey, L.A.: Approximate Extended Formulations. Math. Prog.Ā 105, 501ā€“522 (2006)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  33. Varadarajan, K., Venkataraman, G.: Graph Decomposition and a Greedy Algorithm for Edge-disjoint Paths. In: Proc. of ACM-SIAM SODA, pp. 379ā€“380 (2004)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chekuri, C., Ene, A., Korula, N. (2009). Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer Programs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics