Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

An important research thread in algorithmic game theory studies the design of efficient truthful mechanisms that approximate the optimal social welfare. A fundamental question is whether an α-approximation algorithm translates into an α-approximate truthful mechanism. It is well-known that plugging an α-approximation algorithm into the VCG technique may not yield a truthful mechanism. Thus, it is natural to investigate properties of approximation algorithms that enable their use in truthful mechanisms.

The main contribution of this paper is to identify a useful and natural property of approximation algorithms, which we call loser-independence; this property is applicable in the single-minded and single-parameter settings. Intuitively, a loser-independent algorithm does not change its outcome when the bid of a losing agent increases, unless that agent becomes a winner. We demonstrate that loser-independent algorithms can be employed as sub-procedures in a greedy iterative packing approach while preserving monotonicity. A greedy iterative approach provides a good approximation in the context of maximizing a non-decreasing submodular function subject to independence constraints. Our framework gives rise to truthful approximation mechanisms for various problems. Notably, some problems arise in online mechanism design.

Proofs and details omitted from this extended abstract appear in the full version of this paper. The first author was partially supported by NSF grants CCF-0728782 and CNS-0721899. The second author was supported by the Binational Science Foundation, by the Israel Science Foundation, by the European Commission under the Integrated Project QAP funded by the IST directorate as Contract Number 015848, and by a European Research Council (ERC) Starting Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Hartline, J.D.: Knapsack auctions. In: 17th SODA, pp. 1083–1092 (2006)

    Google Scholar 

  2. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing policies for qos switches. In: 14th SODA, pp. 761–770 (2003)

    Google Scholar 

  3. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. In: 14th SODA, pp. 205–214 (2003)

    Google Scholar 

  4. Azar, Y., Gamzu, I.: Truthful unification framework for packing integer programs with choices. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 833–844. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Azar, Y., Gamzu, I., Gutner, S.: Truthful unsplittable flow for large capacity networks. In: 19th SPAA, pp. 320–329 (2007)

    Google Scholar 

  6. Babaioff, M., Blumrosen, L.: Computationally-feasible truthful auctions for convex bundles. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 27–38. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In: 20th AAAI, pp. 241–247 (2005)

    Google Scholar 

  8. Babaioff, M., Lavi, R., Pavlov, E.: Single-value combinatorial auctions and implementation in undominated strategies. In: 17th SODA, pp. 1054–1063 (2006)

    Google Scholar 

  9. Bartal, Y., Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Lavi, R., Sgall, J., Tichý, T.: Online competitive algorithms for maximizing weighted throughput of unit jobs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 187–198. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial auctions. In: 9th TARK, pp. 72–87 (2003)

    Google Scholar 

  11. Blumrosen, L., Nisan, N.: Combinatorial auctions. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, ch. 11. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  12. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: 37th STOC, pp. 39–48 (2005)

    Google Scholar 

  13. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SICOMP 35(3), 713–728 (2005)

    MathSciNet  Google Scholar 

  15. Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Sgall, J., Tichý, T.: Online competitive algorithms for maximizing weighted throughput of unit jobs. J. Discrete Algorithms 4(2), 255–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chin, F.Y.L., Fung, S.P.Y.: Online scheduling with partial job values: Does timesharing or randomization help? Algorithmica 37(3), 149–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Clarke, E.H.: Multipart pricing of public goods. Public Choice 8, 17–33 (1971)

    Article  Google Scholar 

  18. Cole, R., Dobzinski, S., Fleischer, L.K.: Prompt mechanisms for online auctions. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 170–181. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Dobzinski, S., Sundararajan, M.: On characterizations of truthful mechanisms for combinatorial auctions and scheduling. In: 9th EC, pp. 38–47 (2008)

    Google Scholar 

  20. Englert, M., Westermann, M.: Considering suppressed packets improves buffer management in qos switches. In: 18th SODA, pp. 209–218 (2007)

    Google Scholar 

  21. Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e. In: 47th FOCS, pp. 667–676 (2006)

    Google Scholar 

  22. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions ii. Mathematical Programming Study 8, 73–87 (1978)

    Article  MathSciNet  Google Scholar 

  23. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: 17th SODA, pp. 611–620 (2006)

    Google Scholar 

  24. Goundan, P.R., Schulz, A.S.: Revisiting the greedy approach to submodular set function maximization (manuscript) (2007)

    Google Scholar 

  25. Groves, T.: Incentives in teams. Econemetrica 41(4), 617–631 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hajek, B.: On the competitiveness of online scheduling of unit-length packets with hard deadlines in slotted time. In: Conference on Information Sciences and Systems, pp. 434–438 (2001)

    Google Scholar 

  27. Hajiaghayi, M.T., Kleinberg, R.D., Mahdian, M., Parkes, D.C.: Online auctions with re-usable goods. In: 6th EC, pp. 165–174 (2005)

    Google Scholar 

  28. Jenkyns, T.A.: The efficiency of the “greedy” algorithm. In: 7th South Eastern Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)

    Google Scholar 

  29. Lavi, R., Nisan, N.: Online ascending auctions for gradually expiring items. In: 16th SODA, pp. 1146–1155 (2005)

    Google Scholar 

  30. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. In: 46th FOCS, pp. 595–604 (2005)

    Google Scholar 

  31. Lehmann, D.J., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. JACM 49(5), 577–602 (2002)

    Article  MathSciNet  Google Scholar 

  32. Li, F., Sethuraman, J., Stein, C.: Better online buffer management. In: 18th SODA, pp. 199–208 (2007)

    Google Scholar 

  33. Mestre, J.: Greedy in approximation algorithms. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 528–539. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  34. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combinatorial auctions. GEB 64, 612–631 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions i. Mathematical Programming 14, 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, ch. 9. Cambridge University Press, Cambridge (2007)

    Chapter  Google Scholar 

  37. Nisan, N., Ronen, A.: Algorithmic mechanism design. GEB 35, 166–196 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. JAIR 29, 19–47 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Parkes, D.C.: Online mechanisms. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, ch. 16. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  40. Porter, R.: Mechanism design for online real-time scheduling. In: 5th EC, pp. 61–70 (2004)

    Google Scholar 

  41. Vickery, W.: Counterspeculation, auctions and competitive sealed tender. Journal of Finance 16, 8–37 (1961)

    Article  Google Scholar 

  42. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: 40th STOC, pp. 67–74 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chekuri, C., Gamzu, I. (2009). Truthful Mechanisms via Greedy Iterative Packing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics