Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spatiotemporal Phase Congruency Based Invariant Features for Human Behavior Classification

  • Conference paper
Advances in Multimedia Information Processing - PCM 2009 (PCM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

Abstract

In applications of behavior recognition, the use of spatiotemporal invariant feature points can improve the robustness to noise, illumination and geometric distortions. In this paper, we develop a novel detection model of spatiotemporal invariant feature by generalizing the notion of image phase congruency to video volume phase congruency. The proposed model detects feature points by measuring the spatiotemporal phase congruency of Fourier series components along with their characteristic scale and principal orientation. Compared with other state-of-the-art methods, the key advantages of this interest point detector include the invariance to contrast variations and more precise feature location. Furthermore, an invariant feature descriptor is advanced based on the phase congruency map, resulting in enhanced discriminative power in classification tasks. Experimental results on KTH human motion dataset demonstrate the validity and effectiveness of the extracted invariant features in the human behavior recognition scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior Recognition via Sparse Spatio-Temporal Features. In: ICCV VS-PETS 2005, Beijing, China (2005)

    Google Scholar 

  2. Haralick, R., Shapiro, L.: Computer and Robot Vision II. Addison-Wesley, Reading (1993)

    Google Scholar 

  3. Laptev, I.: On Space-Time Interest Points. International Journal of Computer Vision 64(2/3), 107–123 (2005)

    Article  Google Scholar 

  4. Harris, C., Stephens: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–152 (1988)

    Google Scholar 

  5. Oikonomopoulos, A., Patras, I., Pantic, M.: Spatiotemporal saliency for human action recognition. In: ICME 2005, pp. 430–433 (2005)

    Google Scholar 

  6. Kadir, T., Brady, M.: Scale saliency: a novel approach to salient feature and scale selection. In: International Conference on Visual Information Engineering, November 2000, pp. 25–28 (2000)

    Google Scholar 

  7. Kovesi, P.D.: A Dimensionless Measure of Edge Significance from Phase Congruency Calculated via Wavelets. In: The First New Zealand Conference on Image and Vision Computing, Auckland, August 16-18, pp. 87–94 (1993)

    Google Scholar 

  8. Kovesi, P.: Image Features From Phase Congruency. Videre: A Journal of Computer Vision Research 1(3) (Summer 1999)

    Google Scholar 

  9. Kovesi, P.: Phase Congruency Detects Corners and Edges. In: The Australian Pattern Recognition Society Conference: DICTA 2003, Sydney, December 2003, pp. 309–318 (2003)

    Google Scholar 

  10. Oppenheim, A.V., Lim, J.S.: The importance of phase in signal. Proceedings of the IEEE 69, 529–541 (1981)

    Article  Google Scholar 

  11. Morrone, M.C., Ross, J.R., Burr, D.C., Owens, R.A.: Mach bands are phase dependent. Nature 324(6094), 250–253 (1986)

    Article  Google Scholar 

  12. Morrone, M.C., Owens, R.A.: Feature detection from local energy. Pattern Recognition Letters 6, 303–313 (1987)

    Article  Google Scholar 

  13. Venkatesh, S., Owens, R.A.: An energy feature detection scheme. In: The International Conference on Image Processing, Singapore, pp. 553–557 (1989)

    Google Scholar 

  14. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: ICPR, pp. 32–36 (2004)

    Google Scholar 

  15. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Article  MATH  Google Scholar 

  16. Myerscough, P.J., Nixon, M.S.: Temporal phase congruency. In: The 6th. IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 76–79 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Xu, Y., Yang, X., Song, L., Zhang, W. (2009). Spatiotemporal Phase Congruency Based Invariant Features for Human Behavior Classification. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics